Skip to content

Data Effiecient Image Transformers Implemented on a smaller Scale, using the CIFAR100 dataset and downsampled Imagenet ImageNet32

Notifications You must be signed in to change notification settings

varungupta31/DeIT-CIFAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeIT CIFAR

Data Effiecient Image Transformers Implemented on a smaller Scale, using the CIFAR100 dataset and downsampled Imagenet ImageNet32.

The following is an attempt to implement the Training data-efficient image transformers & distillation through attention Paper

Model Zoo of the Various Models Trained

S.No Model Link (Present in OneDrive)
1 Teacher - RegNetY_16GF Model regnet_y_16gf_32_3
2 DeIT-B Scratch CIFAR VIT_B_cifar_scratch_38
3 DeIT-B Imagenet32 Scratch VIT_B_imagenet_scratch_7
4 DeIT-B Hard Distillation vit_b_reg16gf_hard_dist_53
5 DeIT-B⚗︎ vit_b_reg16gf_hard_dist_token_28
6 DeIT-S Scratch CIFAR VIT_S_cifar_scratch_50
7 DeIT-S Hard Distillation vit_s_hard_dist_no_token_87
8 DeIT-S⚗︎ vit_S_reg16gf_hard_dist_token_49
9 DeIT-Ti Scratch CIFAR VIT_Ti_CIFAR_SCRATCH_43
10 DeIT-Ti Hard Distillation vit_ti_hard_dist_no_token_89
11 DeIT-Ti⚗︎ vit_Ti_reg16gf_hard_dist_token_65

Results

To install the Conda environmnet, simply run the following command

conda env create -n ENVNAME --file environment.yml

Colab Inference Demo

For this demo to be functional, kindly download the DeIT-B⚗︎ model from the above link and update the path in the notebook. Open In Colab](https://colab.research.google.com/drive/10LXtebYncHbuwuqd9NNWEf46UVYDZfEx?usp=sharing

Trained Models Available Here

ImageNet32 Dataset can be downloaded from the official ImageNet Downloads Page.

Note: Models with the extension .pth are completely contained and simply require the call model = torch.load(model_path), instead of the usual, load_state_dict call.

About

Data Effiecient Image Transformers Implemented on a smaller Scale, using the CIFAR100 dataset and downsampled Imagenet ImageNet32

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published