Data Effiecient Image Transformers Implemented on a smaller Scale, using the CIFAR100 dataset and downsampled Imagenet ImageNet32.
The following is an attempt to implement the Training data-efficient image transformers & distillation through attention Paper
S.No | Model | Link (Present in OneDrive) |
---|---|---|
1 | Teacher - RegNetY_16GF Model | regnet_y_16gf_32_3 |
2 | DeIT-B Scratch CIFAR | VIT_B_cifar_scratch_38 |
3 | DeIT-B Imagenet32 Scratch | VIT_B_imagenet_scratch_7 |
4 | DeIT-B Hard Distillation | vit_b_reg16gf_hard_dist_53 |
5 | DeIT-B⚗︎ | vit_b_reg16gf_hard_dist_token_28 |
6 | DeIT-S Scratch CIFAR | VIT_S_cifar_scratch_50 |
7 | DeIT-S Hard Distillation | vit_s_hard_dist_no_token_87 |
8 | DeIT-S⚗︎ | vit_S_reg16gf_hard_dist_token_49 |
9 | DeIT-Ti Scratch CIFAR | VIT_Ti_CIFAR_SCRATCH_43 |
10 | DeIT-Ti Hard Distillation | vit_ti_hard_dist_no_token_89 |
11 | DeIT-Ti⚗︎ | vit_Ti_reg16gf_hard_dist_token_65 |
To install the Conda environmnet, simply run the following command
conda env create -n ENVNAME --file environment.yml
Colab Inference Demo
For this demo to be functional, kindly download the DeIT-B⚗︎ model from the above link and update the path in the notebook. ](https://colab.research.google.com/drive/10LXtebYncHbuwuqd9NNWEf46UVYDZfEx?usp=sharing
Trained Models Available Here
ImageNet32 Dataset can be downloaded from the official ImageNet Downloads Page.
Note: Models with the extension .pth
are completely contained and simply require the call
model = torch.load(model_path)
, instead of the usual, load_state_dict
call.