-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvit.py
431 lines (327 loc) · 11.3 KB
/
vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import torch
import torch.nn as nn
class PatchEmbed(nn.Module):
"""
Splitting the images into patches and embedding them.
[Parameters]
img_size : int
Size of the image.
patch_size : int
Size of the patch.
in_chans : int
Number of input channels
embed_dim : int
[Attributes]
n_patches : int
proj : nn.Conv2d
Convolutional layer that does both the splitting into patches and their embedding.
"""
def __init__(self, img_size, patch_size, in_chans=3, embed_dim=768):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.n_patches = (img_size // patch_size) ** 2
assert (img_size % patch_size == 0), "The patches won't symmetrically divide the image, please update the number of patches."
#A Convolution operation in which we keep the filter size and the stide equal to the patch size, so as to perform non-overlapping conv.
#Why we need this operation? Learnable operation, also no need to mess with dividing the patches later into their respective dimensions.
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
"""
[Parameters]
x : torch.Tensor
(n_samples, in_chans, img_size, img_size)
[Returns]
y : torch.Tensor
(n_samples, n_patches, embed_dim)
"""
x = self.proj(x) # (n_samples, embed_dim, n_patches ** 0.5, n_patches ** 0.5)
#This would flatten the tensor across the last two dimensions.
x = x.flatten(2) # (n_samples, embed_dim, n_patches)
x = x.transpose(1, 2) # (n_samples, n_patches, embed_dim)
return x
"""
------------------------------------------------------------------------------------------------
So far,
Given an input image --> Patch Embedding Class to Divide the Image into Patches and Convert the patch into emebeddings.
------------------------------------------------------------------------------------------------
"""
class Attention(nn.Module):
"""
[Parameters]
dim : int
The input and out dimension of per token features.
n_heads : int
Number of attention heads.
qkv_bias : bool
If True then we include bias to the query, key and value projections.
attn_p : float
Dropout probability applied to the query, key and value tensors.
proj_p : float
Dropout probability applied to the output tensor.
[Attributes]
scale : float
Normalizing consant for the dot product.
qkv : nn.Linear
Linear projection for the query, key and value.
proj : nn.Linear
Linear mapping that takes in the concatenated output of all attention
heads and maps it into a new space.
attn_drop, proj_drop : nn.Dropout
Dropout layers.
"""
def __init__(self, dim, n_heads=12, qkv_bias=True, attn_p=0., proj_p=0.):
super().__init__()
self.n_heads = n_heads
self.dim = dim
self.head_dim = dim // n_heads
self.scale = self.head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_p)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_p)
def forward(self, x):
"""Run forward pass.
Parameters
----------
x : torch.Tensor
Shape `(n_samples, n_patches + 1, dim)`.
Returns
-------
torch.Tensor
Shape `(n_samples, n_patches + 1, dim)`.
"""
n_samples, n_tokens, dim = x.shape
if dim != self.dim:
raise ValueError
qkv = self.qkv(x) # (n_samples, n_patches + 1, 3 * dim)
qkv = qkv.reshape(
n_samples, n_tokens, 3, self.n_heads, self.head_dim
) # (n_smaples, n_patches + 1, 3, n_heads, head_dim)
qkv = qkv.permute(
2, 0, 3, 1, 4
) # (3, n_samples, n_heads, n_patches + 1, head_dim)
q, k, v = qkv[0], qkv[1], qkv[2]
k_t = k.transpose(-2, -1) # (n_samples, n_heads, head_dim, n_patches + 1)
dp = (
q @ k_t
) * self.scale # (n_samples, n_heads, n_patches + 1, n_patches + 1)
attn = dp.softmax(dim=-1) # (n_samples, n_heads, n_patches + 1, n_patches + 1)
attn = self.attn_drop(attn)
weighted_avg = attn @ v # (n_samples, n_heads, n_patches +1, head_dim)
weighted_avg = weighted_avg.transpose(
1, 2
) # (n_samples, n_patches + 1, n_heads, head_dim)
weighted_avg = weighted_avg.flatten(2) # (n_samples, n_patches + 1, dim)
x = self.proj(weighted_avg) # (n_samples, n_patches + 1, dim)
x = self.proj_drop(x) # (n_samples, n_patches + 1, dim)
return x
class MLP(nn.Module):
"""Multilayer perceptron.
Parameters
----------
in_features : int
Number of input features.
hidden_features : int
Number of nodes in the hidden layer.
out_features : int
Number of output features.
p : float
Dropout probability.
Attributes
----------
fc : nn.Linear
The First linear layer.
act : nn.GELU
GELU activation function.
fc2 : nn.Linear
The second linear layer.
drop : nn.Dropout
Dropout layer.
"""
def __init__(self, in_features, hidden_features, out_features, p=0.):
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = nn.GELU()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(p)
def forward(self, x):
"""Run forward pass.
Parameters
----------
x : torch.Tensor
Shape `(n_samples, n_patches + 1, in_features)`.
Returns
-------
torch.Tensor
Shape `(n_samples, n_patches +1, out_features)`
"""
x = self.fc1(
x
) # (n_samples, n_patches + 1, hidden_features)
x = self.act(x) # (n_samples, n_patches + 1, hidden_features)
x = self.drop(x) # (n_samples, n_patches + 1, hidden_features)
x = self.fc2(x) # (n_samples, n_patches + 1, out_features)
x = self.drop(x) # (n_samples, n_patches + 1, out_features)
return x
class Block(nn.Module):
"""Transformer block.
Parameters
----------
dim : int
Embeddinig dimension.
n_heads : int
Number of attention heads.
mlp_ratio : float
Determines the hidden dimension size of the `MLP` module with respect
to `dim`.
qkv_bias : bool
If True then we include bias to the query, key and value projections.
p, attn_p : float
Dropout probability.
Attributes
----------
norm1, norm2 : LayerNorm
Layer normalization.
attn : Attention
Attention module.
mlp : MLP
MLP module.
"""
def __init__(self, dim, n_heads, mlp_ratio=4.0, qkv_bias=True, p=0., attn_p=0.):
super().__init__()
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
self.attn = Attention(
dim,
n_heads=n_heads,
qkv_bias=qkv_bias,
attn_p=attn_p,
proj_p=p
)
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
hidden_features = int(dim * mlp_ratio)
self.mlp = MLP(
in_features=dim,
hidden_features=hidden_features,
out_features=dim,
)
def forward(self, x):
"""Run forward pass.
Parameters
----------
x : torch.Tensor
Shape `(n_samples, n_patches + 1, dim)`.
Returns
-------
torch.Tensor
Shape `(n_samples, n_patches + 1, dim)`.
"""
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class VisionTransformer(nn.Module):
"""Simplified implementation of the Vision transformer.
Parameters
----------
img_size : int
Both height and the width of the image (it is a square).
patch_size : int
Both height and the width of the patch (it is a square).
in_chans : int
Number of input channels.
n_classes : int
Number of classes.
embed_dim : int
Dimensionality of the token/patch embeddings.
depth : int
Number of blocks.
n_heads : int
Number of attention heads.
mlp_ratio : float
Determines the hidden dimension of the `MLP` module.
qkv_bias : bool
If True then we include bias to the query, key and value projections.
p, attn_p : float
Dropout probability.
Attributes
----------
patch_embed : PatchEmbed
Instance of `PatchEmbed` layer.
cls_token : nn.Parameter
Learnable parameter that will represent the first token in the sequence.
It has `embed_dim` elements.
pos_emb : nn.Parameter
Positional embedding of the cls token + all the patches.
It has `(n_patches + 1) * embed_dim` elements.
pos_drop : nn.Dropout
Dropout layer.
blocks : nn.ModuleList
List of `Block` modules.
norm : nn.LayerNorm
Layer normalization.
"""
def __init__(
self,
img_size=384,
patch_size=16,
in_chans=3,
n_classes=1000,
embed_dim=768,
depth=12,
n_heads=12,
mlp_ratio=4.,
qkv_bias=True,
p=0.,
attn_p=0.,
):
super().__init__()
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, 1 + self.patch_embed.n_patches, embed_dim)
)
self.pos_drop = nn.Dropout(p=p)
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
n_heads=n_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
p=p,
attn_p=attn_p,
)
for _ in range(depth)
]
)
self.norm = nn.LayerNorm(embed_dim, eps=1e-6)
self.head = nn.Linear(embed_dim, n_classes)
def forward(self, x):
"""Run the forward pass.
Parameters
----------
x : torch.Tensor
Shape `(n_samples, in_chans, img_size, img_size)`.
Returns
-------
logits : torch.Tensor
Logits over all the classes - `(n_samples, n_classes)`.
"""
n_samples = x.shape[0]
x = self.patch_embed(x)
cls_token = self.cls_token.expand(
n_samples, -1, -1
) # (n_samples, 1, embed_dim)
x = torch.cat((cls_token, x), dim=1) # (n_samples, 1 + n_patches, embed_dim)
x = x + self.pos_embed # (n_samples, 1 + n_patches, embed_dim)
x = self.pos_drop(x)
for block in self.blocks:
x = block(x)
x = self.norm(x)
cls_token_final = x[:, 0] # just the CLS token
x = self.head(cls_token_final)
return x