Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new FromData operation description #2735

Merged
merged 2 commits into from
Jan 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 53 additions & 16 deletions crates/burn-fusion/src/ops/boolean.rs
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
use burn_tensor::{
ops::{binary_ops_shape, FloatTensor, IntTensor},
repr::{FromDataOperationDescription, TensorDescription},
DType, Element, TensorData,
};
use std::marker::PhantomData;
Expand All @@ -24,32 +25,68 @@ use burn_tensor::{

impl<B: FusionBackend> BoolTensorOps<Self> for Fusion<B> {
fn bool_empty(shape: Shape, device: &Device<Self>) -> BoolTensor<Self> {
#[derive(new)]
struct EmptyOps<B: FusionBackend> {
desc: TensorDescription,
device: Device<B>,
}

impl<B: FusionBackend> Operation<B::FusionRuntime> for EmptyOps<B> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let output = B::bool_empty(Shape::from(&self.desc.shape), &self.device);
handles.register_bool_tensor::<B>(&self.desc.id, output);
}
}

let stream = StreamId::current();
let client = get_client::<B>(&device.clone());
let tensor = B::bool_empty(shape.clone(), device);
let out = client.tensor_uninitialized(shape.dims.clone(), DType::Bool);

client.register_tensor(
B::bool_tensor_handle(tensor),
shape.dims,
StreamId::current(),
DType::Bool,
)
let desc = out.to_description_out();

client.register(
vec![stream],
OperationDescription::BaseBool(BaseOperationDescription::Empty(desc.clone())),
EmptyOps::<B>::new(desc, device.clone()),
);

out
}

async fn bool_into_data(tensor: BoolTensor<Self>) -> TensorData {
tensor.bool_into_data::<B>().await
}

fn bool_from_data(data: burn_tensor::TensorData, device: &Device<Self>) -> BoolTensor<Self> {
#[derive(new)]
struct FromDataOps<B: FusionBackend> {
desc: FromDataOperationDescription,
device: Device<B>,
}

impl<B: FusionBackend> Operation<B::FusionRuntime> for FromDataOps<B> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let output = B::bool_from_data(self.desc.data, &self.device);
handles.register_bool_tensor::<B>(&self.desc.out.id, output);
}
}

let stream = StreamId::current();
let client = get_client::<B>(&device.clone());
let tensor = B::bool_from_data(data, device);
let shape = burn_tensor::TensorMetadata::shape(&tensor);

client.register_tensor(
B::bool_tensor_handle(tensor),
shape.dims,
StreamId::current(),
DType::Bool,
)
let out = client.tensor_uninitialized(data.shape.clone(), DType::Bool);

let desc = FromDataOperationDescription {
out: out.to_description_out(),
data,
};

client.register(
vec![stream],
OperationDescription::BaseBool(BaseOperationDescription::FromData(desc.clone())),
FromDataOps::<B>::new(desc, device.clone()),
);

out
}

fn bool_into_int(tensor: BoolTensor<Self>) -> IntTensor<Self> {
Expand Down
69 changes: 52 additions & 17 deletions crates/burn-fusion/src/ops/float.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,16 +16,35 @@ use std::{marker::PhantomData, ops::Range};

impl<B: FusionBackend> FloatTensorOps<Self> for Fusion<B> {
fn float_from_data(data: TensorData, device: &Device<Self>) -> FloatTensor<Self> {
#[derive(new)]
struct FromDataOps<B: FusionBackend> {
desc: FromDataOperationDescription,
device: Device<B>,
}

impl<B: FusionBackend> Operation<B::FusionRuntime> for FromDataOps<B> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let output = B::float_from_data(self.desc.data, &self.device);
handles.register_float_tensor::<B>(&self.desc.out.id, output);
}
}

let stream = StreamId::current();
let client = get_client::<B>(&device.clone());
let tensor = B::float_from_data(data, device);
let shape = burn_tensor::TensorMetadata::shape(&tensor);

client.register_tensor(
B::float_tensor_handle(tensor),
shape.dims,
StreamId::current(),
B::FloatElem::dtype(),
)
let out = client.tensor_uninitialized(data.shape.clone(), B::FloatElem::dtype());

let desc = FromDataOperationDescription {
out: out.to_description_out(),
data,
};

client.register(
vec![stream],
OperationDescription::BaseFloat(BaseOperationDescription::FromData(desc.clone())),
FromDataOps::<B>::new(desc, device.clone()),
);

out
}

fn float_random(
Expand Down Expand Up @@ -233,16 +252,32 @@ impl<B: FusionBackend> FloatTensorOps<Self> for Fusion<B> {
}

fn float_empty(shape: Shape, device: &Device<Self>) -> FloatTensor<Self> {
let client = get_client::<B>(&device.clone());
#[derive(new)]
struct EmptyOps<B: FusionBackend> {
desc: TensorDescription,
device: Device<B>,
}

impl<B: FusionBackend> Operation<B::FusionRuntime> for EmptyOps<B> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let output = B::float_empty(Shape::from(&self.desc.shape), &self.device);
handles.register_float_tensor::<B>(&self.desc.id, output);
}
}

let stream = StreamId::current();
let tensor = B::float_empty(shape.clone(), device);
let client = get_client::<B>(&device.clone());
let out = client.tensor_uninitialized(shape.dims.clone(), B::FloatElem::dtype());

client.register_tensor(
B::float_tensor_handle(tensor),
shape.dims,
stream,
B::FloatElem::dtype(),
)
let desc = out.to_description_out();

client.register(
vec![stream],
OperationDescription::BaseFloat(BaseOperationDescription::Empty(desc.clone())),
EmptyOps::<B>::new(desc, device.clone()),
);

out
}

fn float_add(lhs: FloatTensor<Self>, rhs: FloatTensor<Self>) -> FloatTensor<Self> {
Expand Down
68 changes: 51 additions & 17 deletions crates/burn-fusion/src/ops/int.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,34 +15,68 @@ use std::marker::PhantomData;

impl<B: FusionBackend> IntTensorOps<Self> for Fusion<B> {
fn int_empty(shape: Shape, device: &Device<Self>) -> IntTensor<Self> {
let client = get_client::<B>(&device.clone());
let tensor = B::int_empty(shape.clone(), device);
#[derive(new)]
struct EmptyOps<B: FusionBackend> {
desc: TensorDescription,
device: Device<B>,
}

impl<B: FusionBackend> Operation<B::FusionRuntime> for EmptyOps<B> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let output = B::int_empty(Shape::from(&self.desc.shape), &self.device);
handles.register_int_tensor::<B>(&self.desc.id, output);
}
}

let stream = StreamId::current();
let client = get_client::<B>(&device.clone());
let out = client.tensor_uninitialized(shape.dims.clone(), B::IntElem::dtype());

client.register_tensor(
B::int_tensor_handle(tensor),
shape.dims,
stream,
B::IntElem::dtype(),
)
let desc = out.to_description_out();

client.register(
vec![stream],
OperationDescription::BaseInt(BaseOperationDescription::Empty(desc.clone())),
EmptyOps::<B>::new(desc, device.clone()),
);

out
}

async fn int_into_data(tensor: IntTensor<Self>) -> TensorData {
tensor.int_into_data::<B>().await
}

fn int_from_data(data: TensorData, device: &Device<Self>) -> IntTensor<Self> {
let client = get_client::<B>(&device.clone());
let tensor = B::int_from_data(data, device);
let shape = burn_tensor::TensorMetadata::shape(&tensor);
#[derive(new)]
struct FromDataOps<B: FusionBackend> {
desc: FromDataOperationDescription,
device: Device<B>,
}

impl<B: FusionBackend> Operation<B::FusionRuntime> for FromDataOps<B> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let output = B::int_from_data(self.desc.data, &self.device);
handles.register_int_tensor::<B>(&self.desc.out.id, output);
}
}

let stream = StreamId::current();
let client = get_client::<B>(&device.clone());
let out = client.tensor_uninitialized(data.shape.clone(), B::IntElem::dtype());

client.register_tensor(
B::int_tensor_handle(tensor),
shape.dims,
stream,
B::IntElem::dtype(),
)
let desc = FromDataOperationDescription {
out: out.to_description_out(),
data,
};

client.register(
vec![stream],
OperationDescription::BaseInt(BaseOperationDescription::FromData(desc.clone())),
FromDataOps::<B>::new(desc, device.clone()),
);

out
}

fn int_device(tensor: &IntTensor<Self>) -> Device<Self> {
Expand Down
47 changes: 35 additions & 12 deletions crates/burn-fusion/src/ops/qtensor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,9 @@ use burn_tensor::{
ops::{FloatElem, FloatTensor, IntTensor, QTensorOps, QuantizedTensor},
quantization::{QuantizationParametersPrimitive, QuantizationScheme},
repr::{
DequantizeOperationDescription, FloatOperationDescription, HandleContainer,
OperationDescription, QuantizationParametersDescription, QuantizeOperationDescription,
BaseOperationDescription, DequantizeOperationDescription, FloatOperationDescription,
FromDataOperationDescription, HandleContainer, OperationDescription,
QuantizationParametersDescription, QuantizeOperationDescription,
},
DType, Device, Element, Shape, TensorData,
};
Expand All @@ -19,19 +20,41 @@ use crate::{

impl<B: FusionBackend> QTensorOps<Self> for Fusion<B> {
fn q_from_data(data: TensorData, device: &Device<Self>) -> QuantizedTensor<Self> {
#[derive(new)]
struct FromDataOps<B: FusionBackend> {
desc: FromDataOperationDescription,
device: Device<B>,
}

impl<B: FusionBackend> Operation<B::FusionRuntime> for FromDataOps<B> {
fn execute(self: Box<Self>, handles: &mut HandleContainer<B::Handle>) {
let output = B::q_from_data(self.desc.data, &self.device);
handles.register_quantized_tensor::<B>(&self.desc.out.id, output);
}
}

match data.dtype {
DType::QFloat(_scheme) => {
let dtype = data.dtype;
let client = get_client::<B>(device);
let tensor = B::q_from_data(data, device);
let shape = burn_tensor::TensorMetadata::shape(&tensor);

client.register_tensor(
B::quantized_tensor_handle(tensor),
shape.dims,
StreamId::current(),
dtype,
)

let stream = StreamId::current();
let client = get_client::<B>(&device.clone());
let out = client.tensor_uninitialized(data.shape.clone(), dtype);

let desc = FromDataOperationDescription {
out: out.to_description_out(),
data,
};

client.register(
vec![stream],
OperationDescription::BaseFloat(BaseOperationDescription::FromData(
desc.clone(),
)),
FromDataOps::<B>::new(desc, device.clone()),
);

out
}
_ => panic!(
"Invalid dtype (expected DType::QFloat, got {:?})",
Expand Down
6 changes: 6 additions & 0 deletions crates/burn-fusion/src/stream/context.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1056,6 +1056,12 @@ impl RelativeOps for BaseOperationDescription {
BaseOperationDescription::Empty(desc) => {
BaseOperationDescription::Empty(desc.to_relative(converter))
}
BaseOperationDescription::FromData(desc) => {
BaseOperationDescription::FromData(FromDataOperationDescription {
data: desc.data.clone(),
out: desc.out.to_relative(converter),
})
}
}
}
}
Expand Down
19 changes: 15 additions & 4 deletions crates/burn-router/src/ops/op_bool.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@ use burn_tensor::ops::{BoolTensor, BoolTensorOps, FloatElem, FloatTensor, IntEle
use burn_tensor::repr::{
BaseOperationDescription, BinaryOperationDescription, BoolOperationDescription,
CatOperationDescription, ExpandOperationDescription, FlipOperationDescription,
OperationDescription, PermuteOperationDescription, RepeatDimOperationDescription,
ReshapeDescription, SliceAssignOperationDescription, SliceOperationDescription,
SwapDimsDescription, UnaryOperationDescription,
FromDataOperationDescription, OperationDescription, PermuteOperationDescription,
RepeatDimOperationDescription, ReshapeDescription, SliceAssignOperationDescription,
SliceOperationDescription, SwapDimsDescription, UnaryOperationDescription,
};
use burn_tensor::{DType, Device, Element, Shape, TensorData, TensorMetadata};

Expand All @@ -31,7 +31,18 @@ impl<R: RunnerChannel> BoolTensorOps<Self> for BackendRouter<R> {

fn bool_from_data(data: TensorData, device: &Device<Self>) -> BoolTensor<Self> {
let client = get_client::<R>(device);
client.register_tensor_data(data.convert::<bool>())
let out = client.register_empty_tensor(data.shape.clone(), DType::Bool);

let desc = FromDataOperationDescription {
data,
out: out.to_description_out(),
};

client.register(OperationDescription::BaseBool(
BaseOperationDescription::FromData(desc),
));

out
}

fn bool_into_int(tensor: BoolTensor<Self>) -> IntTensor<Self> {
Expand Down
Loading
Loading