Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use weights as defined in dataset.yaml #31

Draft
wants to merge 1 commit into
base: vinam/subtask-interval
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 0 additions & 6 deletions examples/poyo/configs/base.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -15,12 +15,6 @@ eval_batch_size: null # if null, will use batch_size
num_workers: 4
seed: 42

subtask_weights:
random_period: 1.0
hold_period: 0.1
reach_period: 5.0
return_period: 1.0

optim:
base_lr: 3.125e-5 # scaled linearly by batch size
weight_decay: 1e-4
Expand Down
12 changes: 12 additions & 0 deletions examples/poyo/configs/dataset/perich_miller_population_2018.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,12 @@
- m_20150625_center_out_reaching
- m_20150626_center_out_reaching
config:
weights:
movement_periods.random_period: 1.0
movement_periods.hold_period: 0.1
movement_periods.reach_period: 5.0
movement_periods.return_period: 1.0
cursor_outlier_segments: 0.0
eval_movement_phase: reach_period


Expand Down Expand Up @@ -110,4 +116,10 @@
- m_20140221_random_target_reaching
- m_20140224_random_target_reaching
config:
weights:
movement_periods.random_period: 1.0
movement_periods.hold_period: 0.1
movement_periods.reach_period: 5.0
movement_periods.return_period: 1.0
cursor_outlier_segments: 0.0
Comment on lines +120 to +124
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this work? I think movement_periods.reach_period is not present in the random-target sessions.

eval_movement_phase: random_period
79 changes: 29 additions & 50 deletions torch_brain/models/poyo.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,13 +253,11 @@ def __init__(
modality_spec: ModalitySpec,
sequence_length: float = 1.0,
eval: bool = False,
subtask_weights: Optional[Iterable[float]] = None,
):
self.unit_tokenizer = unit_tokenizer
self.session_tokenizer = session_tokenizer

self.modality_spec = modality_spec
self.subtask_weights = subtask_weights

self.latent_step = latent_step
self.num_latents_per_step = num_latents_per_step
Expand Down Expand Up @@ -308,33 +306,18 @@ def __call__(self, data: Data) -> Dict:
if output_values.dtype == np.float64:
output_values = output_values.astype(np.float32)

session_index = self.session_tokenizer(data.session)
session_index = np.repeat(session_index, len(output_timestamps))
output_session_index = self.session_tokenizer(data.session)
output_session_index = np.repeat(output_session_index, len(output_timestamps))

# Assign each output timestamp a movement_phase
movement_phase_assignment = dict()
for k in data.movement_phases.keys():
movement_phase_assignment[k] = interval_contains(
data.movement_phases.__dict__[k],
output_timestamps,
)

# Weights for the output predictions (used in the loss function)
if self.subtask_weights is None:
output_weights = np.ones(len(output_values), dtype=np.float32)
else:
output_weights = np.zeros_like(output_timestamps, dtype=np.float32)
for k in data.movement_phases.keys():
output_weights = output_weights + (
movement_phase_assignment[k].astype(float) * self.subtask_weights[k]
)

# Mask for the output predictions
output_mask = np.ones(len(output_values), dtype=bool)
if self.eval:
# During eval, only evaluate on the subtask specified in the config
eval_movement_phase = data.config["eval_movement_phase"]
output_mask = output_mask & (movement_phase_assignment[eval_movement_phase])
output_weights = np.ones_like(output_timestamps, dtype=np.float32)
if "weights" in data.config:
weights = data.config["weights"]
for weight_key, weight_value in weights.items():
# extract the interval from the weight key
weight = data.get_nested_attribute(weight_key)
if not isinstance(weight, Interval):
raise ValueError(f"Weight {weight_key} is not an Interval")
output_weights[isin_interval(output_timestamps, weight)] *= weight_value

batch = {
# input sequence
Expand All @@ -346,9 +329,9 @@ def __call__(self, data: Data) -> Dict:
"latent_index": latent_index,
"latent_timestamps": latent_timestamps,
# output sequence
"output_session_index": pad8(session_index),
"output_session_index": pad8(output_session_index),
"output_timestamps": pad8(output_timestamps),
"output_mask": pad8(output_mask),
"output_mask": track_mask8(output_session_index),
Comment on lines -351 to +334
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I went with the pad8 route because that way we can & the evaluation mask with it (if doing eval) and don't have to pass a separate eval mask to the validator.

# ground truth targets
"target_values": pad8(output_values),
"target_weights": pad8(output_weights),
Expand All @@ -361,26 +344,22 @@ def __call__(self, data: Data) -> Dict:
return batch


def interval_contains(
interval: Interval, x: Union[float, np.ndarray]
) -> Union[bool, np.ndarray]:
r"""If x is a single number, returns True if x is in the interval.
If x is a 1d numpy array, return a 1d bool numpy array.
"""
def isin_interval(timestamps: np.ndarray, interval: Interval) -> np.ndarray:
r"""Check if timestamps are in any of the intervals in the `Interval` object.

if isinstance(x, float):
if len(interval) == 0:
return False
Args:
timestamps: Timestamps to check.
interval: Interval to check against.

return np.logical_and(x >= interval.start, x < interval.end).any()
elif isinstance(x, np.ndarray):
if len(interval) == 0:
return np.zeros_like(x, dtype=bool)
Returns:
Boolean mask of the same shape as `timestamps`.
"""
if len(interval) == 0:
return np.zeros_like(timestamps, dtype=bool)

x_expanded = x[:, None]
y = np.logical_and(
x_expanded >= interval.start[None, :], x_expanded < interval.end[None, :]
)
y = np.logical_or.reduce(y, axis=1)
assert y.shape == x.shape
return y
timestamps_expanded = timestamps[:, None]
mask = np.any(
(timestamps_expanded >= interval.start) & (timestamps_expanded < interval.end),
axis=1,
)
return mask