Skip to content

Commit

Permalink
Rename syl6eqssr to eqsstrrdi
Browse files Browse the repository at this point in the history
This is in iset.mm and set.mm
  • Loading branch information
jkingdon committed Feb 5, 2024
1 parent 1a068d5 commit 5cfb2ea
Show file tree
Hide file tree
Showing 3 changed files with 80 additions and 80 deletions.
2 changes: 1 addition & 1 deletion changes-set.txt
Original file line number Diff line number Diff line change
Expand Up @@ -110,12 +110,12 @@ proposed syl6eleqr eleqtrrdi compare to eleqtrri or eleqtrrd
proposed syl6ss sstrdi compare to sstri or sstrd
proposed syl6sseq sseqtrdi compare to sseqtri or sseqtrd
proposed syl6eqss eqsstrdi compare to eqsstri or eqsstrd
proposed syl6eqssr eqsstrrdi compare to eqsstrri or eqsstrrd
(Please send any comments on these proposals to the mailing list or
make a github issue.)

DONE:
Date Old New Notes
4-Feb-24 syl6eqssr eqsstrrdi compare to eqsstrri or eqsstrrd
29-Jan-24 ccatw2s1ccatws2 [same] revised - eliminated unnecessary antecedent
28-Jan-24 ccat2s1fst [same] revised - eliminated unnecessary antecedent
28-Jan-24 ccatw2s1ass [same] revised - eliminated unnecessary antecedent
Expand Down
22 changes: 11 additions & 11 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -27592,11 +27592,11 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use
$}

${
syl6eqssr.1 $e |- ( ph -> B = A ) $.
syl6eqssr.2 $e |- B C_ C $.
eqsstrrdi.1 $e |- ( ph -> B = A ) $.
eqsstrrdi.2 $e |- B C_ C $.
$( A chained subclass and equality deduction. (Contributed by Mario
Carneiro, 2-Jan-2017.) $)
syl6eqssr $p |- ( ph -> A C_ C ) $=
eqsstrrdi $p |- ( ph -> A C_ C ) $=
( eqcomd syl6eqss ) ABCDACBEGFH $.
$}

Expand Down Expand Up @@ -49996,7 +49996,7 @@ We use their notation ("onto" under the arrow). (Contributed by NM,
ffvresb $p |- ( Fun F -> ( ( F |` A ) : A --> B <->
A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) ) $=
( wfun cres wf cv cdm wcel cfv wa wral fdm cin dmres inss2 adantl wfn wss
eqsstri syl6eqssr sselda wceq fvres ffvelrn eqeltrrd jca ralrimiva ralimi
eqsstri eqsstrrdi sselda wceq fvres ffvelrn eqeltrrd jca ralrimiva ralimi
crn simpl dfss3 sylibr funfn fnssres sylanb sylan2 eleq1d syl5ibr ralimia
simpr fnfvrnss syl2anc df-f sylanbrc ex impbid2 ) DEZBCDBFZGZAHZDIZJZVLDK
ZCJZLZABMZVKVQABVKVLBJZLZVNVPVKBVMVLVKBVJIZVMBCVJNWABVMOVMDBPBVMQUAUBUCVT
Expand Down Expand Up @@ -57019,7 +57019,7 @@ currently used conventions for such cases (see ~ cbvmpox , ~ ovmpox and
10-Sep-2015.) $)
tposss $p |- ( F C_ G -> tpos F C_ tpos G ) $=
( vx wss cdm ccnv c0 csn cun cv cuni cmpt ccom ctpos coss1 cres wceq dmss
cnvss df-tpos unss1 resmpt 4syl resss syl6eqssr coss2 syl sstrd 3sstr4g )
cnvss df-tpos unss1 resmpt 4syl resss eqsstrrdi coss2 syl sstrd 3sstr4g )
ABDZACAEZFZGHZIZCJHFKZLZMZBCBEZFZUMIZUOLZMZANBNUJUQBUPMZVBABUPOUJUPVADVCV
BDUJUPVAUNPZVAUJUKURDULUSDUNUTDVDUPQABRUKURSULUSUMUACUTUNUOUBUCVAUNUDUEUP
VABUFUGUHCATCBTUI $.
Expand Down Expand Up @@ -66604,7 +66604,7 @@ texts assume excluded middle (in which case the two intersection
sbthlemi5 $p |- ( ( EXMID /\ ( dom f = A /\ ran g C_ A ) )
-> dom H = A ) $=
( vy wem cv cdm wceq wss wa cdif cun cin cuni cima sbthlem1 difss sstri
crn sseq2 mpbiri dfss sylib uneq1d sbthlemi3 imassrn syl6eqssr sylan9eq
crn sseq2 mpbiri dfss sylib uneq1d sbthlemi3 imassrn eqsstrrdi sylan9eq
uneq2d an12s cres ccnv dmeqi dmres df-rn eqcomi ineq2i uneq12i syl6reqr
dmun eqtri 3eqtri wcel wdc wral exmidexmid ralrimivw biantrud undifdcss
syl6rbbr adantr eqtr4d ) LEMZNZBOZFMZUFZBPZQZQZGNZDUAZBWIRZSZBWGWKWIWAT
Expand Down Expand Up @@ -98002,7 +98002,7 @@ Infinity and the extended real number system (cont.)
iooval2 $p |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) =
{ x e. RR | ( A < x /\ x < B ) } ) $=
( cxr wcel wa cioo co cv clt wbr crab cr iooval cin inrab2 ressxr sseqin2
wceq wss mpbi rabeq ax-mp eqtri elioore ssriv syl6eqssr df-ss sylib eqtrd
wceq wss mpbi rabeq ax-mp eqtri elioore ssriv eqsstrrdi df-ss sylib eqtrd
syl5reqr ) BDECDEFZBCGHZBAIZJKUNCJKFZADLZUOAMLZABCNZULUQUPMOZUPUSUOADMOZL
ZUQUOADMPUTMSZVAUQSMDTVBQMDRUAUOAUTMUBUCUDULUPMTUSUPSULUPUMMURAUMMUNBCUEU
FUGUPMUHUIUKUJ $.
Expand Down Expand Up @@ -119261,7 +119261,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
wa c0 eluzfz1 syl rspcdva adantr subidd sum0 syl6reqr oveq2 adantl syl6eq
cv sumeq1d wi eqeq1 eqeq1d imbi12d vtoclg imp sylan oveq2d 3eqtr4d cz cfn
fzo0 eluzel2 eluzelz fzofig syl2anc wral elfzofz fzofzp1 fsumsub eluzp1m1
cbvsumv fzoval fzossfz syl6eqssr sselda adantlr syldan fsum1p syl5eqr wss
cbvsumv fzoval fzossfz eqsstrrdi sselda adantlr syldan fsum1p syl5eqr wss
simpr fzp1ss fsumm1 peano2zd fsumshftm ax-1cn pncan sylancl oveq1d eqtr4d
1zzd sylan2 fsumcl eluzfz2 addcomd eqtr3d 3eqtr3d oveq12d pnpcan2d 3eqtrd
zcnd eqtrd wo uzp1 mpjaodan ) AJIQZIJUARZCDUBRZFUCZEHUBRZQJIUDUERZUFUGSZA
Expand Down Expand Up @@ -131637,7 +131637,7 @@ class of all (base sets of) groups is proper. (Contributed by Mario
structcnvcnv $p |- ( F Struct X -> `' `' F = ( F \ { (/) } ) ) $=
( cstr wbr ccnv c0 csn cdif wss cin wceq wcel cvv cxp 0nelxp cnvcnv eqsstri
wn inss2 cnvss sseli mto disjsn mpbir cnvcnvss reldisj ax-mp mpbi wrel wfun
wb a1i structn0fun funrel syl dfrel2 sylib difss mp2b syl6eqssr eqssd ) ABC
wb a1i structn0fun funrel syl dfrel2 sylib difss mp2b eqsstrrdi eqssd ) ABC
DZAEZEZAFGZHZVDVFIZVBVDVEJFKZVGVHFVDLZRVIFMMNZLMMOVDVJFVDAVJJVJAPAVJSQUAUBV
DFUCUDVDAIVHVGUKAUEVDVEAUFUGUHULVBVFVFEZEZVDVBVFUIZVLVFKVBVFUJVMABUMVFUNUOV
FUPUQVFAIVKVCIVLVDIAVEURVFATVKVCTUSUTVA $.
Expand Down Expand Up @@ -136684,7 +136684,7 @@ F C_ ( CC X. X ) ) $=
txss12 $p |- ( ( ( B e. V /\ D e. W ) /\ ( A C_ B /\ C C_ D ) ) ->
( A tX C ) C_ ( B tX D ) ) $=
( vx vy wcel wa wss cv cxp cmpo crn ctg cfv ctx co cvv eqid txbasex resss
cres resmpo syl6eqssr adantl rnss syl tgss syl2an2r wceq ssexg txval an4s
cres resmpo eqsstrrdi adantl rnss syl tgss syl2an2r wceq ssexg txval an4s
syl2an ancoms adantr 3sstr4d ) BEIZDFIZJZABKZCDKZJZJZGHACGLHLMZNZOZPQZGHB
DVGNZOZPQZACRSZBDRSZVBVLTIVEVIVLKZVJVMKGHVLBDEFVLUAZUBVFVHVKKZVPVEVRVBVEV
HVKACMZUDVKGHBDACVGUEVKVSUCUFUGVHVKUHUIVIVLTUJUKVEVBVNVJULZVCUTVDVAVTVCUT
Expand All @@ -136696,7 +136696,7 @@ F C_ ( CC X. X ) ) $=
txbasval $p |- ( ( R e. V /\ S e. W ) ->
( ( topGen ` R ) tX ( topGen ` S ) ) = ( R tX S ) ) $=
( vu vv vm vn vx vy wcel wa cv cxp ctg cfv cvv wss wceq ciun cmpo crn ctx
co eqid txbasex cres bastg resmpo syl2an resss syl6eqssr rnss syl wral wf
co eqid txbasex cres bastg resmpo syl2an resss eqsstrrdi rnss syl wral wf
cuni wex eltg3 bi2anan9 exdistrv an4 xpeq12i xpiundir xpiundi a1i iuneq2i
uniiun 3eqtri txvalex adantr ad2antrr ssel2 anim12i an4s sylan2 ralrimiva
txopn anassrs tgiun syl2anc fveq2d 3eqtr4d eleqtrd eqeltrid xpeq12 eleq1d
Expand Down
Loading

0 comments on commit 5cfb2ea

Please sign in to comment.