Skip to content

Commit

Permalink
Add dedekindeu to iset.mm
Browse files Browse the repository at this point in the history
This is a bit like dedekind in set.mm although various details are
different including that the lower and upper cuts have to be open (and
thus the real corresponding to the Dedekind cut is not contained
in either one).

Includes lemmas dedekindeulemuub , dedekindeulemub , dedekindeulemloc ,
dedekindeulemlub , dedekindeulemlu , and dedekindeulemeu

Expand dedekind entry in mmil.html to mention dedekindeu and
differences.
  • Loading branch information
jkingdon committed Feb 5, 2024
1 parent 733f82e commit 1a068d5
Show file tree
Hide file tree
Showing 2 changed files with 164 additions and 1 deletion.
159 changes: 159 additions & 0 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -141800,6 +141800,165 @@ S C_ ( P ( ball ` D ) T ) ) $=
$)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Dedekind cuts
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

${
dedekindeu.lss $e |- ( ph -> L C_ RR ) $.
dedekindeu.uss $e |- ( ph -> U C_ RR ) $.
dedekindeu.lm $e |- ( ph -> E. q e. RR q e. L ) $.
dedekindeu.um $e |- ( ph -> E. r e. RR r e. U ) $.
dedekindeu.lr $e |- ( ph -> A. q e. RR (
q e. L <-> E. r e. L q < r ) ) $.
dedekindeu.ur $e |- ( ph -> A. r e. RR (
r e. U <-> E. q e. U q < r ) ) $.
dedekindeu.disj $e |- ( ph -> ( L i^i U ) = (/) ) $.
dedekindeu.loc $e |- ( ph -> A. q e. RR A. r e. RR (
q < r -> ( q e. L \/ r e. U ) ) ) $.

${
$d A q r z $. $d L q z $. $d U a q z $. $d U q r z $. $d ph q z $.
dedekindeulemuub.u $e |- ( ph -> A e. U ) $.
$( Lemma for ~ dedekindeu . Any element of the upper cut is an upper
bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.) $)
dedekindeulemuub $p |- ( ph -> A. z e. L z < A ) $=
( clt wbr wcel cr va cv wral wrex wb eleq1 breq2 rexbidv bibi12d sseldd
wceq rspcdva mpbid wa ad2antrr simpr simplrl breq1 rspcev sylan cbvrexv
wss sylib ad3antrrr adantr mpbird wn simplll cin disj r19.21bi pm2.65da
c0 syl2anc nltled simplrr lelttrd ralrimiva rexlimddv ) AGUBZCQRZBUBZCQ
RZBEUCGDACDSZWAGDUDZPAFUBZDSZVTWFQRZGDUDZUEZWDWEUEFTCWFCUKZWGWDWIWEWFCD
UFWKWHWAGDWFCVTQUGUHUIMADTCIPUJZULUMAVTDSZWAUNZUNZWCBEWOWBESZUNZWBVTCWQ
ETWBAETVBWNWPHUOWOWPUPZUJZWQDTVTADTVBWNWPIUOAWMWAWPUQZUJZACTSWNWPWLUOWQ
WBVTWSXAWQVTWBQRZWBDSZWQXBUNZXCXBGDUDZXDUAUBZWBQRZUADUDZXEWQWMXBXHWTXGX
BUAVTDXFVTWBQURZUSUTXGXBUAGDXIVAVCXDWJXCXEUEFTWBWFWBUKZWGXCWIXEWFWBDUFX
JWHXBGDWFWBVTQUGUHUIAWJFTUCWNWPXBMVDWQWBTSXBWSVEULVFXDAWPXCVGZAWNWPXBVH
WQWPXBWRVEAXKBEAEDVIVMUKXKBEUCNBEDVJVCVKVNVLVOAWMWAWPVPVQVRVS $.
$}

${
$d L a q r y $. $d L a r x y $. $d U a q r y $. $d a ph q r y $.
$( Lemma for ~ dedekindeu . The lower cut has an upper bound.
(Contributed by Jim Kingdon, 31-Jan-2024.) $)
dedekindeulemub $p |- ( ph -> E. x e. RR A. y e. L y < x ) $=
( va wral cr wrex adantr cv wcel clt wbr eleq1w cbvrexv sylib wa simprl
wss wb cin c0 wceq wo wi dedekindeulemuub brralrspcev syl2anc rexlimddv
simprr ) APUAZDUBZCUAZBUAUCUDCEQBRSZPRAFUAZDUBZFRSZVCPRSKVGVCFPRFPDUEUF
UGAVBRUBZVCUHZUHZVIVDVBUCUDCEQVEAVIVCUIVKCVBDEFGAERUJVJHTADRUJVJITAGUAZ
EUBZGRSVJJTAVHVJKTAVMVLVFUCUDZFESUKGRQVJLTAVGVNGDSUKFRQVJMTAEDULUMUNVJN
TAVNVMVGUOUPFRQGRQVJOTAVIVCVAUQBCVDVBUCREURUSUT $.
$}

${
$d L q r z $. $d U q r z $. $d ph q x y z $. $d r x y z $.
$( Lemma for ~ dedekindeu . The set L is located. (Contributed by Jim
Kingdon, 31-Jan-2024.) $)
dedekindeulemloc $p |- ( ph -> A. x e. RR A. y e. RR ( x < y
-> ( E. z e. L x < z \/ A. z e. L z < y ) ) ) $=
( clt wrex cr ad2antrr cv wbr wral wo wi wcel weq eleq1w orbi2d imbi12d
breq2 breq1 orbi1d ralbidv adantr simprl rspcdva simprr rexbidv bibi12d
wa simpr wb mpbid cbvrexv sylib ex wss c0 wceq dedekindeulemuub orim12d
cin syld ralrimivva ) ABUAZCUAZQUBZVPDUAZQUBZDFRZVSVQQUBDFUCZUDZUEBCSSA
VPSUFZVQSUFZVAZVAZVRVPFUFZVQEUFZUDZWCWGVPGUAZQUBZWHWKEUFZUDZUEZVRWJUEGS
VQGCUGZWLVRWNWJWKVQVPQUKWPWMWIWHGCEUHUIUJWGHUAZWKQUBZWQFUFZWMUDZUEZGSUC
ZWOGSUCHSVPHBUGZXAWOGSXCWRWLWTWNWQVPWKQULZXCWSWHWMHBFUHZUMUJUNAXBHSUCZW
FPUOAWDWEUPZUQAWDWEURUQWGWHWAWIWBWGWHWAWGWHVAZWLGFRZWAXHWHXIWGWHVBXHWSW
RGFRZVCZWHXIVCHSVPXCWSWHXJXIXEXCWRWLGFXDUSUTAXKHSUCZWFWHMTWGWDWHXGUOUQV
DWLVTGDFWKVSVPQUKVEVFVGWGWIWBWGWIVADVQEFGHAFSVHWFWIITAESVHWFWIJTAWSHSRW
FWIKTAWMGSRWFWILTAXLWFWIMTAWMWRHERVCGSUCWFWINTAFEVMVIVJWFWIOTAXFWFWIPTW
GWIVBVKVGVLVNVO $.
$}

${
$d L q r x y z $. $d U q r y z $. $d ph q r x y z $.
$( Lemma for ~ dedekindeu . The set L has a least upper bound.
(Contributed by Jim Kingdon, 31-Jan-2024.) $)
dedekindeulemlub $p |- ( ph -> E. x e. RR ( A. y e. L -. x < y
/\ A. y e. RR ( y < x -> E. z e. L y < z ) ) ) $=
( cr clt wral wrex wss cv wcel wex wbr wo wi wn wa eleq1w cbvrexv rexex
sylbi syl dedekindeulemub dedekindeulemloc axsuploc syl22anc ) AFQUABUB
ZFUCZBUDZCUBZUSRUEZCFSBQTUSVBRUEZUSDUBZRUEDFTVEVBRUEDFSUFUGCQSBQSVDUHCF
SVCVBVERUEDFTUGCQSUIBQTIAHUBFUCZHQTZVAKVGUTBQTVAVFUTHBQHBFUJUKUTBQULUMU
NABCEFGHIJKLMNOPUOABCDEFGHIJKLMNOPUPBCDFUQUR $.
$}

${
$d L q r x y z $. $d U q r y z $. $d ph q r x y z $.
$( Lemma for ~ dedekindeu . There is a number which separates the lower
and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.) $)
dedekindeulemlu $p |- ( ph -> E. x e. RR (
A. q e. L q < x /\ A. r e. U x < r ) ) $=
( clt wbr wral cr wa wcel vy vz cv wn wrex wi dedekindeulemlub simpr wb
wss ad3antrrr sseldd rsp syl mpd mpbid adantr simprl simp-4r wceq breq2
simprr notbid ad2antrr rspcdva ltletrd rexlimddv ralrimiva simplll sylc
nltled breq1 rexbidv imbi12d cbvrexv sylib mpbird disj r19.21bi syl2anc
cin c0 pm2.65da lelttrd jca ex reximdva ) ABUCZUAUCZOPZUDZUADQZWIWHOPZW
IUBUCZOPZUBDUEZUFZUARQZSZBRUEFUCZWHOPZFDQZWHEUCZOPZECQZSZBRUEABUAUBCDEF
GHIJKLMNUGAWSXFBRAWHRTZSZWSXFXHWSSZXBXEXIXAFDXIWTDTZSZWTXCOPZXAEDXKXJXL
EDUEZXIXJUHZXKWTRTZXJXMUIZXKDRWTADRUJZXGWSXJGUKZXNULZAXOXPUFZXGWSXJAXPF
RQXTKXPFRUMUNZUKUOUPXKXCDTZXLSZSZWTXCWHXKXOYCXSUQYDDRXCXKXQYCXRUQXKYBXL
URZULZAXGWSXJYCUSZXKYBXLVBYDXCWHYFYGYDWKXDUDUADXCWIXCUTWJXDWIXCWHOVAVCX
IWLXJYCXHWLWRURVDYEVEVKVFVGVHXIXDECXIXCCTZSZXLXDFCYIYHXLFCUEZXIYHUHZYIA
XCRTZYHYJUIZAXGWSYHVIZYICRXCYIACRUJZYNHUNZYKULZAYMERQYLYMUFLYMERUMUNVJU
PYIWTCTZXLSZSZWHWTXCAXGWSYHYSUSZYTCRWTYIYOYSYPUQYIYRXLURZULZYIYLYSYQUQY
TWHWTUUAUUCYTXAYRYTYRXAUUBUQYTXASZAXJYRUDZYIAYSXAYNVDZUUDXJXMUUDWTWNOPZ
UBDUEZXMUUDXAUUHYTXAUHUUDWQXAUUHUFUARWTWIWTUTZWMXAWPUUHWIWTWHOVLUUIWOUU
GUBDWIWTWNOVLVMVNXIWRYHYSXAXHWLWRVBUKYTXOXAUUCUQZVEUOUUGXLUBEDWNXCWTOVA
VOVPUUDAXOXPUUFUUJYAVJVQAUUEFDADCWAWBUTUUEFDQMFDCVRVPVSVTWCVKYIYRXLVBWD
VGVHWEWFWGUO $.
$}

${
$d A q r $. $d B r $. $d L q r $. $d U q r $.
dedekindeulemeu.are $e |- ( ph -> A e. RR ) $.
dedekindeulemeu.ac $e |- ( ph
-> ( A. q e. L q < A /\ A. r e. U A < r ) ) $.
dedekindeulemeu.bre $e |- ( ph -> B e. RR ) $.
dedekindeulemeu.bc $e |- ( ph
-> ( A. q e. L q < B /\ A. r e. U B < r ) ) $.
dedekindeulemeu.lt $e |- ( ph -> A < B ) $.
$( Lemma for ~ dedekindeu . Part of proving uniqueness. (Contributed by
Jim Kingdon, 31-Jan-2024.) $)
dedekindeulemeu $p |- ( ph -> F. ) $=
( wcel wfal wa clt wbr breq1 wral simpld adantr simpr rspcdva pm2.21fal
cv wn ltnrd breq2 simprd wo wi wceq eleq1 orbi2d imbi12d orbi1d ralbidv
cr mpd mpjaodan ) ABEUAZUBCDUAZAVIUCZBBUDUEZVKGUMZBUDUEZVLGEBVMBBUDUFAV
NGEUGZVIAVOBFUMZUDUEZFDUGQUHUIAVIUJUKAVLUNVIABPUOUIULAVJUCZCCUDUEZVRCVP
UDUEZVSFDCVPCCUDUPAVTFDUGZVJAVMCUDUEGEUGWASUQUIAVJUJUKAVSUNVJACRUOUIULA
BCUDUEZVIVJURZTAVQVIVPDUAZURZUSZWBWCUSFVFCVPCUTZVQWBWEWCVPCBUDUPWGWDVJV
IVPCDVAVBVCAVMVPUDUEZVMEUAZWDURZUSZFVFUGWFFVFUGGVFBVMBUTZWKWFFVFWLWHVQW
JWEVMBVPUDUFWLWIVIWDVMBEVAVDVCVEOPUKRUKVGVH $.
$}

$d L q r x y $. $d U q r x y $. $d ph q r x y $.
$( A Dedekind cut identifies a unique real number. Similar to ~ df-inp
except that the the Dedekind cut is formed by sets of reals (rather than
positive rationals). But in both cases the defining property of a
Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and
located. (Contributed by Jim Kingdon, 5-Jan-2024.) $)
dedekindeu $p |- ( ph -> E! x e. RR (
A. q e. L q < x /\ A. r e. U x < r ) ) $=
( clt wbr wral wa cr ad4antr vy cv wrex wrmo wreu dedekindeulemlu wceq wi
wcel cap wn wfal wss wb cin simprl ad2antrr adantr simprr dedekindeulemeu
c0 wo simpr reaplt syl2anc mpbid mpjaodan inegd cc simplrl simplrr mpbird
recnd apti ex ralrimivva breq2 ralbidv breq1 anbi12d rmo4 sylibr sylanbrc
reu5 ) AFUBZBUBZOPZFDQZWFEUBZOPZECQZRZBSUCWLBSUDZWLBSUEABCDEFGHIJKLMNUFAW
LWEUAUBZOPZFDQZWNWIOPZECQZRZRZWFWNUGZUHZUASQBSQWMAXBBUASSAWFSUIZWNSUIZRZR
ZWTXAXFWTRZXAWFWNUJPZUKZXGXHXGXHRZWFWNOPZULWNWFOPZXJXKRWFWNCDEFADSUMZXEWT
XHXKGTACSUMZXEWTXHXKHTAWEDUIZFSUCZXEWTXHXKITAWICUIZESUCZXEWTXHXKJTAXOWEWI
OPZEDUCUNFSQZXEWTXHXKKTAXQXSFCUCUNESQZXEWTXHXKLTADCUOVAUGZXEWTXHXKMTAXSXO
XQVBUHESQFSQZXEWTXHXKNTXJXCXKXFXCWTXHAXCXDUPUQZURXGWLXHXKXFWLWSUPZUQXJXDX
KXFXDWTXHAXCXDUSUQZURXGWSXHXKXFWLWSUSZUQXJXKVCUTXJXLRWNWFCDEFAXMXEWTXHXLG
TAXNXEWTXHXLHTAXPXEWTXHXLITAXRXEWTXHXLJTAXTXEWTXHXLKTAYAXEWTXHXLLTAYBXEWT
XHXLMTAYCXEWTXHXLNTXJXDXLYFURXGWSXHXLYGUQXJXCXLYDURXGWLXHXLYEUQXJXLVCUTXJ
XHXKXLVBZXGXHVCXJXCXDXHYHUNYDYFWFWNVDVEVFVGVHXGWFVIUIWNVIUIXAXIUNXGWFAXCX
DWTVJVMXGWNAXCXDWTVKVMWFWNVNVEVLVOVPWLWSBUASXAWHWPWKWRXAWGWOFDWFWNWEOVQVR
XAWJWQECWFWNWIOVSVRVTWAWBWLBSWDWC $.
$}


$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
Derivatives
Expand Down
6 changes: 5 additions & 1 deletion mmil.raw.html
Original file line number Diff line number Diff line change
Expand Up @@ -5679,7 +5679,11 @@

<TR>
<TD>dedekind , dedekindle</TD>
<TD><I>none</I></TD>
<TD>~ dedekindeu</TD>
<TD>various details are different including that in ~ dedekindeu
the lower and upper cuts have to be open (and thus the real
corresponding to the Dedekind cut is not contained in either the
lower or upper cut)</TD>
</TR>

<TR>
Expand Down

0 comments on commit 1a068d5

Please sign in to comment.