Skip to content

ktro2828/TensorRT-MTR

Repository files navigation

TensorRT-MTR

Support of inference with TensorRT for sshaoshuai/MTR.

Inputs/Outputs

Inputs

  • trajectory <float; [B, N, Tp, Da]>
  • trajectory_mask <bool: [B, N, Tp]>
  • polyline <float: [B, K, P, Dp]>
  • polyline_mask <bool: [B, K, P]>
  • polyline_center <float: [B, K, 3]>
  • last_pos <float; [B, N, 3]
  • track_index <int: [B]>
  • label_index <int: [N]>
  • intention_points <float: [B, 64, 3]>

where,

  • B ...The number of target agents
  • N ...The number of all agents
  • Tp ...The number of past frames(=11)
  • Da ...The number of agent state dimensions(=29)
  • K ...The max number of polylines(=768)
  • P ...The max number of points contained in each polyline(=20)
  • Dp ...The number of polyline state dimensions(=9)

Outputs

  • scores <float: [B, M]>
  • trajectory <float: [B, M, Tf, Dt]>

where,

  • M ...The number of modes
  • Tf ...The number of the predicted future frames(=80)
  • Dt ...The number of the predicted trajectory dimensions(=7) in the order of (x, y, dx, dy, yaw, vx, cy).

Build & Run

Download onnx

# download onnx.zip
gh release download onnx

Build

cmake -B build && cmake --build build -j${nproc}

Execute

  • With trtexec
# with trtexec
<PATH_TO_TRTEXEC_BIN>/trtexec --onnx=<PATH_TO_ONNX> --staticPlugins=./build/libtrtmtr_plugin.so
  • With executable

Fist, please install trtmtr with cmake --install <DIR>:

sudo cmake --install build

Note

Note that, $LD_LIBRARY_PATH includes /usr/local/lib.
If not, append export LD_LIBRARY_PATH="/usr/local/lib:$LD_LIBRARY_PATH" to your .bashrc.

Then, run the following command:

trtmtr <PATH_TO_ONNX_OR_ENGINE> [--dynamic --fp16 -n <NUM_REPEAT>]

Unittest

# test agent data container defined in `include/mtr/agent.hpp`
./build/test_agent

# test polyline data container defined in `include/mtr/polyline.hpp`
./build/test_polyline

# test intention point data container defined in `include/mtr/intention_point.hpp`
./build/test_intention_point

TODO

  • TensorRT custom plugins
  • CUDA kernels
    • pre-process
    • post-process
  • Shape inference
    • static shape
    • dynamic shape
  • Inference sample
  • Visualization
  • Evaluation

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published