Unofficial pytorch version of reproducing the method of class incremental learning (Working) in classification.
Original code is from this repo.
Currently only CIFAR100 dataset is available.
- How to Implement (iCaRL)
python main.py train --train-mode icarl --gpu-ids 0 --model resnet32
- How to Implement (EEIL, with BiC setting)
python main.py train --train-mode eeil --gpu-ids 2 --task-size 10 --model resnet32 --batch-size 128 --lr 0.1 --gamma 0.1 --epochs 250 --lr-steps 100,150,200 --weight-decay 0.0002
- How to Implement (EEIL, with EEIL setting)
python main.py train --train-mode eeil --gpu-ids 2 --task-size 10 --model resnet32 --batch-size 128 --lr 0.1 --gamma 0.1 --epochs 40 --lr-steps 10,20,30 --weight-decay 0.0001
- How to Implement (BiC)
python main.py train --train-mode bic --gpu-ids 2 --task-size 10 --model resnet32 --batch-size 128 --lr 0.1 --gamma 0.1 --epochs 250 --lr-steps 100,150,200 --weight-decay 0.0002
- 5 task (Top-1 Accuracy)
5 task | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
iCaRL | 78.35 | 65.25 | 54.15 | 47.94 | 38.7 |
EEIL | 82.5 | 72.12 | 65.75 | 59.08 | 54.23 |
BiC | 81.15 | 71.43 | 64.28 | 58.56 | 54.91 |
EEIL use BiC settings for reproducing, we provide EEIL settings also.
- 10 task
10 task | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
iCaRL | 80.6 | 66.7 | 59.67 | 52.88 | 48.36 | 44.68 | 41.76 | 38.19 | 36.03 | 33.19 |
EEIL | 87 | 77.7 | 73.7 | 66.5 | 61.66 | 58.37 | 55.27 | 51.21 | 48.59 | 45.47 |
BiC | 87.7 | 80.4 | 72.17 | 66.45 | 61.92 | 57.78 | 54.61 | 51.4 | 50.28 | 47.78 |
- 20 task
20 task | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
iCaRL | 79.6 | 73.2 | 67.8 | 63.35 | 63.92 | 58.93 | 57.6 | 53.9 | 50.51 | 49 | 47.22 | 42.97 | 41.46 | 38.04 | 32.43 | 30.28 | 27.13 | 25.53 | 23.06 | 20 |
EEIL | 84.4 | 83.3 | 75.4 | 69.65 | 70.36 | 65.6 | 63.86 | 56.8 | 54.29 | 52.3 | 50.42 | 48.32 | 47.95 | 45.39 | 43.12 | 42.81 | 40.58 | 40.46 | 39.65 | 36.12 |
BiC | 87.4 | 85.4 | 78.47 | 76.4 | 73.84 | 68.87 | 65.54 | 61.68 | 57.67 | 54.8 | 53 | 50.68 | 51.21 | 49.62 | 48.77 | 45.76 | 45.29 | 43.67 | 41.27 | 39.64 |
- iCaRL construct exemplar set is borrowed from iCaRL-pytorch.
- repo