-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNaturalInversion.py
377 lines (300 loc) · 13.4 KB
/
NaturalInversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import random
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torchvision.utils as vutils
import math
import numbers
import numpy as np
import os
import glob
import collections
from PIL import Image
import sys
from tqdm import tqdm
from network import Generator, Feature_Decoder
from resnet import ResNet34
import vgg
sys.path.insert(0,os.path.abspath('..'))
NUM_CLASSES = 10
ALPHA=1.0
image_list=[]
target_list=[]
debug_output = False
debug_output = True
# To fix Seed
def random_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
class NaturalInversionFeatureHook():
def __init__(self, module, rs):
self.hook = module.register_forward_hook(self.hook_fn)
self.rs = rs
def hook_fn(self, module, input, output):
nch = input[0].shape[1]
mean = input[0].mean([0, 2, 3])
var = input[0].permute(1, 0, 2, 3).contiguous().view([nch, -1]).var(1, unbiased=False)
r_feature = torch.norm(module.running_var.data.type(var.type()) - var, 2) + torch.norm(
module.running_mean.data.type(var.type()) - mean, 2)
self.r_feature = r_feature
def close(self):
self.hook.remove()
def make_grid(tensor, nrow, padding = 2, pad_value : int = 0):
nmaps = tensor.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
num_channels = tensor.size(1)
grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
# Tensor.copy_() is a valid method but seems to be missing from the stubs
# https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
grid.narrow(1, y * height + padding, height - padding).narrow( # type: ignore[attr-defined]
2, x * width + padding, width - padding
).copy_(tensor[k])
k = k + 1
return grid
def get_images(net,
num_classes=10,
bs=256,
epochs=2000,
prefix=None,
global_iteration=0,
bn_reg_scale=10,
g_lr=0.001,
d_lr=0.0005,
a_lr=0.05,
var_scale=0.001,
l2_coeff=0.00001
):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
kl_loss = nn.KLDivLoss(reduction='batchmean').cuda()
best_cost = 1e6
generator = Generator(8, 1034, 3).to(device)
optimizer_g = optim.Adam(generator.parameters(), lr=g_lr)
#### Feature_Map Decoder
feature = Feature_Decoder().to(device)
optimizer_f = torch.optim.Adam(feature.parameters(), lr=d_lr)
# Learnable Scale Parameter
alpha = torch.empty((bs,3,1,1), requires_grad=True, device=device)
torch.nn.init.normal_(alpha, 5.0, 1)
optimizer_alpha = torch.optim.Adam([alpha], lr=a_lr)
# set up criteria for optimization
criterion = nn.CrossEntropyLoss()
optimizer_g.state = collections.defaultdict(dict)
optimizer_f.state = collections.defaultdict(dict) # Reset state of optimizer
optimizer_alpha.state = collections.defaultdict(dict)
cls_idx_list = [i for i in range(num_classes)]
rand_pick = 6 if num_classes==10 else 56
rand_picked_cls = random.sample(cls_idx_list, rand_pick)
picked = 250 if num_classes==10 else 200
targets = [i % 10 for i in range(picked)] + rand_picked_cls
targets = torch.LongTensor(targets).to('cuda')
tf_targets = F.one_hot(targets, 10)
z = torch.randn((bs, 1024)).to(device)
z = torch.cat((z,tf_targets), dim = 1)
## Create hooks for feature statistics catching
loss_r_feature_layers = []
count = 0
for module in net.modules():
if isinstance(module, nn.BatchNorm2d):
loss_r_feature_layers.append(NaturalInversionFeatureHook(module, 0))
lim_0, lim_1 = 2, 2
for epoch in tqdm(range(epochs), leave=False, bar_format='{l_bar}{bar:20}{r_bar}{bar:-20b}'):
# Concat Z
##### step1
inputs_jit = generator(z)
# apply random jitter offsets
off1 = random.randint(-lim_0, lim_0)
off2 = random.randint(-lim_1, lim_1)
inputs_jit = torch.roll(inputs_jit, shifts=(off1,off2), dims=(2,3))
# Apply random flip
flip = random.random() > 0.5
if flip:
inputs_jit = torch.flip(inputs_jit, dims = (3,))
##### step2
input_for_f = inputs_jit.clone().detach()
with torch.no_grad():
_, f5, f4, f3, f2, f1 = net(input_for_f)
inputs_jit, addition = feature(inputs_jit, f1, f2, f3, f4, f5)
##### step3
inputs_jit = inputs_jit * alpha
inputs_for_save = inputs_jit.data.clone()
# apply random jitter offsets
off1 = random.randint(-lim_0, lim_0)
off2 = random.randint(-lim_1, lim_1)
inputs_jit = torch.roll(inputs_jit, shifts=(off1,off2), dims=(2,3))
# Apply random flip
flip = random.random() > 0.5
if flip:
inputs_jit = torch.flip(inputs_jit, dims = (3,))
outputs, f5, f4, f3, f2, f1 = net(inputs_jit)
loss_target = criterion(outputs, targets)
loss = loss_target
# apply total variation regularization
diff1 = inputs_jit[:,:,:,:-1] - inputs_jit[:,:,:,1:]
diff2 = inputs_jit[:,:,:-1,:] - inputs_jit[:,:,1:,:]
diff3 = inputs_jit[:,:,1:,:-1] - inputs_jit[:,:,:-1,1:]
diff4 = inputs_jit[:,:,:-1,:-1] - inputs_jit[:,:,1:,1:]
loss_var = torch.norm(diff1) + torch.norm(diff2) + torch.norm(diff3) + torch.norm(diff4)
loss = loss + var_scale*loss_var
# R_feature loss
loss_distr = sum([mod.r_feature for idx, mod in enumerate(loss_r_feature_layers)])
loss = loss + bn_reg_scale*loss_distr # best for noise before BN
# l2 loss
loss = loss + l2_coeff * torch.norm(inputs_jit, 2)
if debug_output and epoch % 100==0:
print("It {}\t Losses: total: {:.3f},\ttarget: {:.3f} \tR_feature_loss unscaled:\t {:.3f}\tstyle_loss : {:.3f}".format(epoch, loss.item(),loss_target,loss_distr.item(), 0))
nchs = inputs_jit.shape[1]
vutils.save_image(inputs_jit.data.clone(),
'./{}/generator_{}.png'.format(prefix, str(epoch//100).zfill(2)),
normalize=True, scale_each=True, nrow=10)
if best_cost > loss.item():
best_cost = loss.item()
with torch.no_grad():
best_inputs = generator(z)
_, f5, f4, f3, f2, f1 = net(best_inputs)
best_inputs, addition = feature(best_inputs, f1, f2, f3, f4, f5)
best_inputs *= alpha
optimizer_g.zero_grad()
optimizer_f.zero_grad()
optimizer_alpha.zero_grad()
# backward pass
loss.backward()
optimizer_g.step()
optimizer_f.step()
optimizer_alpha.step()
return best_inputs, targets
def save_finalimages(images, targets, num_generations, prefix, exp_descr):
# method to store generated images locally
local_rank = torch.cuda.current_device()
images = images.data.clone()
for id in range(images.shape[0]):
class_id = str(targets[id].item()).zfill(2)
image = images[id].reshape(3,32,32)
image_np = images[id].data.cpu().numpy()
pil_image = torch.from_numpy(image_np)
save_pth = os.path.join(prefix, 'final_images/s{}'.format(class_id))
if not os.path.exists(save_pth):
os.makedirs(save_pth)
vutils.save_image(image, os.path.join(prefix, 'final_images/s{}/{}_output_{}_'.format(class_id, num_generations, id)) + exp_descr + '.png', normalize=True, scale_each=True, nrow=1)
def test(net):
print('==> Teacher validation')
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
def main(args):
print("loading pre-trained classifier")
net_teacher = ResNet34()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net_teacher = net_teacher.to(device)
criterion = nn.CrossEntropyLoss()
# for reproducability
random_seed(777)
num_classes = 10 if args.dataset=='cifar10' else 100
arch = {'vgg11' : vgg.__dict__['vgg11_bn'](num_classes=num_classes),
'vgg16' : vgg.__dict__['vgg16_bn'](num_classes=num_classes),
'resnet34' : ResNet34(num_classes=num_classes)
}
net_teacher = arch[args.arch].to(device)
checkpoint = torch.load(args.teacher_weights)
net_teacher.load_state_dict(checkpoint)
net_teacher.eval()
cudnn.benchmark = True
prefix_ = args.exp_name
prefix = os.path.join(prefix_, str(args.global_iter)+"/")
for create_folder in [prefix, prefix+"/final_images/"]:
if not os.path.exists(create_folder):
os.makedirs(create_folder)
if 0:
# for check teacher accuracy
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
testset = torchvision.datasets.CIFAR10(root='../data/CIFAR10', train=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.bs, shuffle=True, num_workers=6,
drop_last=True)
# Checking teacher accuracy
print("Checking teacher accuracy")
test(net_teacher)
print("Starting model inversion")
inputs, targets = get_images(net=net_teacher,
num_classes=num_classes,
bs=args.bs,
epochs=args.iters_mi,
prefix=prefix,
global_iteration=args.global_iter,
bn_reg_scale=args.r_feature_weight,
g_lr=args.G_lr,
d_lr=args.D_lr,
a_lr=args.A_lr,
var_scale=args.var_scale,
l2_coeff=args.l2_scale
)
save_finalimages(inputs, targets, args.global_iter, prefix_, args.exp_descr)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch CIFAR10/100 Inversion')
parser.add_argument('--ngpu', type=str, default='0',
help='device number')
parser.add_argument('--dataset', type=str,
choices=['cifar10', 'cifar100'], help='dataset to invert [cifar10/cifar100]')
parser.add_argument('--arch', type=str,
choices=['vgg11', 'vgg16', 'resnet34'],
help='set the pre-trained teacher network architecture [vgg11, vgg16, resnet34]')
parser.add_argument('--bs', default=256, type=int, \
help='batch size')
parser.add_argument('--iters_mi', default=2000, type=int,
help='number of iterations for model inversion')
parser.add_argument('--G_lr', default=0.001, type=float,
help='lr for deep inversion')
parser.add_argument('--D_lr', default=0.0005, type=float,
help='lr for deep inversion')
parser.add_argument('--A_lr', default=0.05, type=float,
help='lr for deep inversion')
parser.add_argument('--var_scale', default=6.0e-3, type=float,
help='TV L2 regularization coefficient')
parser.add_argument('--l2_scale', default=1.5e-5, type=float,
help='L2 regularization coefficient')
parser.add_argument('--r_feature_weight', default=10.0, type=float,
help='weight for BN regularization statistic')
parser.add_argument('--teacher_weights', default='./pretrained/resnet34.pt', type=str,
help='path to load weights of the model')
parser.add_argument('--exp_name', default='sample_image',type=str,
help='path to save final inversion images')
parser.add_argument('--global_iter', type=int,
help='global itertation number')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.ngpu
main(args)