Warning
Currently, this work is in progress.
This repository contains a pipeline for better ASR training solving these two tasks: (1) remove incorrect audio samples from ASR datasets by LID filtering and (2) normalize text samples.
Authors:
- Yehor Smoliakov: @egorsmkv on GitHub, and [email protected] for private discussions.
-
Use https://huggingface.co/facebook/mms-lid-126 to detect the language in audio samples.
-
Use https://github.com/pemistahl/lingua-py to detect the language in text samples.
-
Use https://huggingface.co/skypro1111/mbart-large-50-verbalization to do text normalization (convert numerals/abbreviations to their textual representation, that is, $5 -> five dollars).
- We use the Ukrainian subset of YODAS2 in our command examples.
- We patch the YODAS2's dataset builder script to download only a part of the dataset.
uv venv --python 3.12
source .venv/bin/activate
uv pip install -r requirements.txt
# in development mode
uv pip install -r requirements-dev.txt
- Generate a bash file to download required files from YODAS2:
python generate_commands.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --max_files 10 > download_dataset.sh
- Download the dataset:
bash download_dataset.sh
- Convert the dataset to
datasets
format:
Copy the yodas2_dsbuilder.py
file to your dataset_dir
directory and rename it as dataset_dir
. So in the following example, the dataset_dir
is uk_yodas2
and the script must be renamed as uk_yodas2.py
.
Then convert the dataset, it will unarchive files and generate metadata:
python convert_dataset.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --max_files 10 --cache_dir cache-yodas2-uk000
- Extract utterances:
python extract_utterances.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --batch_size 128 > data/uk000.jsonl
- Text LID:
python text_lid.py --file data/uk000.jsonl --to data/uk000_+tlid.jsonl
- Filter by a language:
python filter_by_language.py --file data/uk000_+tlid.jsonl --to data/uk000_+only_uk.jsonl --language uk --score 0.95
- Audio LID:
python audio_lid.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --batch_size 16 --model_id facebook/mms-lid-126 --file data/uk000_+tlid.jsonl --to data/uk000_+tlid_+alid.jsonl --device cuda:0
- Normalize utterances:
python normalize_utterances.py --file data/uk000.jsonl --to data/uk000_normalized.jsonl --batch_size 8 --device cuda:0
-
Go to
examples/
-
Inference audio samples by the different variants of MMS LID model to see their outputs:
python audio_lid.py --model_id facebook/mms-lid-126 --dataset_dir `pwd`/../uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --device cuda:0 > ../mms-checkpoints-test/mms-lid-126.txt
- Inference text samples by lingua-py to see their text language:
python text_lid.py --dataset_dir `pwd`/../uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000
- Inference text samples by the MBART model for text normalization:
python normalize_utterances.py
- Calculate the duration of the dataset:
python count_durations.py --dataset_dir `pwd`/../uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --batch_size 128
ruff check
ruff format
MMS has these models for the LID task: