Skip to content

Latest commit

 

History

History
149 lines (97 loc) · 4.03 KB

README.md

File metadata and controls

149 lines (97 loc) · 4.03 KB

asr-datasets-cleaner

Warning

Currently, this work is in progress.

This repository contains a pipeline for better ASR training solving these two tasks: (1) remove incorrect audio samples from ASR datasets by LID filtering and (2) normalize text samples.

Authors:

Idea

  1. Use https://huggingface.co/facebook/mms-lid-126 to detect the language in audio samples.

  2. Use https://github.com/pemistahl/lingua-py to detect the language in text samples.

  3. Use https://huggingface.co/skypro1111/mbart-large-50-verbalization to do text normalization (convert numerals/abbreviations to their textual representation, that is, $5 -> five dollars).

Details

  • We use the Ukrainian subset of YODAS2 in our command examples.
  • We patch the YODAS2's dataset builder script to download only a part of the dataset.

Required software

  • Python 3.12
  • uv
  • nq
  • CUDA device

Install

uv venv --python 3.12

source .venv/bin/activate

uv pip install -r requirements.txt

# in development mode
uv pip install -r requirements-dev.txt

Usage

  1. Generate a bash file to download required files from YODAS2:
python generate_commands.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --max_files 10 > download_dataset.sh
  1. Download the dataset:
bash download_dataset.sh
  1. Convert the dataset to datasets format:

Copy the yodas2_dsbuilder.py file to your dataset_dir directory and rename it as dataset_dir. So in the following example, the dataset_dir is uk_yodas2 and the script must be renamed as uk_yodas2.py.

Then convert the dataset, it will unarchive files and generate metadata:

python convert_dataset.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --max_files 10 --cache_dir cache-yodas2-uk000
  1. Extract utterances:
python extract_utterances.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --batch_size 128 > data/uk000.jsonl
  1. Text LID:
python text_lid.py --file data/uk000.jsonl --to data/uk000_+tlid.jsonl
  1. Filter by a language:
python filter_by_language.py --file data/uk000_+tlid.jsonl --to data/uk000_+only_uk.jsonl --language uk --score 0.95
  1. Audio LID:
python audio_lid.py --dataset_dir `pwd`/uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --batch_size 16 --model_id facebook/mms-lid-126 --file data/uk000_+tlid.jsonl --to data/uk000_+tlid_+alid.jsonl --device cuda:0
  1. Normalize utterances:
python normalize_utterances.py --file data/uk000.jsonl --to data/uk000_normalized.jsonl --batch_size 8 --device cuda:0

Examples

  1. Go to examples/

  2. Inference audio samples by the different variants of MMS LID model to see their outputs:

python audio_lid.py --model_id facebook/mms-lid-126 --dataset_dir `pwd`/../uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --device cuda:0 > ../mms-checkpoints-test/mms-lid-126.txt
  1. Inference text samples by lingua-py to see their text language:
python text_lid.py --dataset_dir `pwd`/../uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000
  1. Inference text samples by the MBART model for text normalization:
python normalize_utterances.py
  1. Calculate the duration of the dataset:
python count_durations.py --dataset_dir `pwd`/../uk_yodas2 --subset uk000 --cache_dir ../cache-yodas2-uk000 --batch_size 128

Development

ruff check
ruff format

Misc

MMS has these models for the LID task: