Skip to content

Commit

Permalink
remove unused variables
Browse files Browse the repository at this point in the history
  • Loading branch information
egillax committed Aug 17, 2022
1 parent 67b4bb1 commit 42814de
Show file tree
Hide file tree
Showing 3 changed files with 3 additions and 12 deletions.
2 changes: 1 addition & 1 deletion R/Estimator.R
Original file line number Diff line number Diff line change
Expand Up @@ -320,7 +320,7 @@ gridCvDeep <- function(mappedData,


# save torch code here
estimatorFile <- estimator$save(modelLocation, "DeepEstimatorModel.pt")
estimator$save(modelLocation, "DeepEstimatorModel.pt")

return(
list(
Expand Down
6 changes: 1 addition & 5 deletions R/ResNet.R
Original file line number Diff line number Diff line change
Expand Up @@ -30,16 +30,14 @@
#' @param hiddenFactor How much to grow the amount of neurons in each ResLayer, default: 1:4
#' @param residualDropout How much dropout to apply after last linear layer in ResLayer, default: seq(0, 0.3, 0.05)
#' @param hiddenDropout How much dropout to apply after first linear layer in ResLayer, default: seq(0, 0.3, 0.05)
#' @param normalization Which type of normalization to use. Default: 'Batchnorm'
#' @param activation What kind of activation to use. Default: 'RelU'
#' @param sizeEmbedding Size of embedding layer, default: 2^(6:9) (64 to 512)
#' @param weightDecay Weight decay to apply, default: c(1e-6, 1e-3)
#' @param learningRate Learning rate to use. default: c(1e-2, 1e-5)
#' @param seed Seed to use for sampling hyperparameter space
#' @param hyperParamSearch Which kind of hyperparameter search to use random sampling or exhaustive grid search. default: 'random'
#' @param randomSample How many random samples from hyperparameter space to use
#' @param device Which device to run analysis on, either 'cpu' or 'cuda', default: 'cpu'
#' @param batchSize Size of batch, default: 1024
#' @param batchSize Size of batch, default: 1024
#' @param epochs Number of epochs to run, default: 10
#'
#' @export
Expand All @@ -48,8 +46,6 @@ setResNet <- function(numLayers = c(1:8),
hiddenFactor = c(1:4),
residualDropout = c(seq(0, 0.5, 0.05)),
hiddenDropout = c(seq(0, 0.5, 0.05)),
normalization = c("BatchNorm"),
activation = c("RelU"),
sizeEmbedding = c(2^(6:9)),
weightDecay = c(1e-6, 1e-3),
learningRate = c(1e-2, 3e-4, 1e-5),
Expand Down
7 changes: 1 addition & 6 deletions vignettes/BuildingDeepModels.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ paper](https://arxiv.org/abs/2106.11959).

### Example

#### Set Fuction
#### Set Function

To use the package to fit a ResNet model you can use the `setResNet()`
function to specify the hyperparameter settings for the network.
Expand All @@ -299,11 +299,6 @@ function to specify the hyperparameter settings for the network.
`residualDropout` and`hiddenDropout` : How much dropout to apply in
hidden layer or residual connection

`normalization` : which type of normalization to use (batch
normalization or layer normalization)

`activation` : which activation function to use

`sizeEmbedding` : The size of the initial embedding layer

##### Training process inputs:
Expand Down

0 comments on commit 42814de

Please sign in to comment.