-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
13 changed files
with
1,210 additions
and
1,185 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,115 +1,127 @@ | ||
#' A torch dataset | ||
#' A torch dataset | ||
#' @import data.table | ||
#' @export | ||
Dataset <- torch::dataset( | ||
name = 'myDataset', | ||
name = "myDataset", | ||
#' @param data a dataframe like object with the covariates | ||
#' @param labels a dataframe with the labels | ||
#' @param numericalIndex in what column numeric data is in (if any) | ||
#' @param all if True then returns all features instead of splitting num/cat | ||
initialize = function(data, labels = NULL, numericalIndex = NULL, all=FALSE) { | ||
initialize = function(data, labels = NULL, numericalIndex = NULL, all = FALSE) { | ||
# determine numeric | ||
if (is.null(numericalIndex) && all==FALSE) { | ||
numericalIndex <- data %>% dplyr::group_by(columnId) %>% dplyr::collect() %>% | ||
dplyr::summarise(n=dplyr::n_distinct(.data$covariateValue)) %>% dplyr::pull(n)>1 | ||
self$numericalIndex <- numericalIndex | ||
} | ||
else { | ||
if (is.null(numericalIndex) && all == FALSE) { | ||
numericalIndex <- data %>% | ||
dplyr::group_by(columnId) %>% | ||
dplyr::collect() %>% | ||
dplyr::summarise(n = dplyr::n_distinct(.data$covariateValue)) %>% | ||
dplyr::pull(n) > 1 | ||
self$numericalIndex <- numericalIndex | ||
} else { | ||
self$numericalIndex <- NULL | ||
} | ||
|
||
|
||
# add labels if training (make 0 vector for prediction) | ||
if(!is.null(labels)){ | ||
if (!is.null(labels)) { | ||
self$target <- torch::torch_tensor(labels) | ||
} else{ | ||
if (all==FALSE) { | ||
self$target <- torch::torch_tensor(rep(0, data %>% dplyr::distinct(rowId) | ||
%>% dplyr::collect() %>% nrow())) | ||
} else{ | ||
} else { | ||
if (all == FALSE) { | ||
self$target <- torch::torch_tensor(rep(0, data %>% dplyr::distinct(rowId) | ||
%>% dplyr::collect() %>% nrow())) | ||
} else { | ||
self$target <- torch::torch_tensor(rep(0, dim(data)[[1]])) | ||
} | ||
} | ||
# Weight to add in loss function to positive class | ||
self$posWeight <- (self$target==0)$sum()/self$target$sum() | ||
self$posWeight <- (self$target == 0)$sum() / self$target$sum() | ||
# for DeepNNTorch | ||
if (all) { | ||
self$all <- torch::torch_tensor(as.matrix(data), dtype = torch::torch_float32()) | ||
self$cat <- NULL | ||
self$num <- NULL | ||
return() | ||
self$all <- torch::torch_tensor(as.matrix(data), dtype = torch::torch_float32()) | ||
self$cat <- NULL | ||
self$num <- NULL | ||
return() | ||
} | ||
# add features | ||
catColumns <- which(!numericalIndex) | ||
dataCat <- dplyr::filter(data,columnId %in% catColumns) %>% | ||
catColumns <- which(!numericalIndex) | ||
dataCat <- dplyr::filter(data, columnId %in% catColumns) %>% | ||
dplyr::arrange(columnId) %>% | ||
dplyr::group_by(columnId) %>% | ||
dplyr::collect() %>% | ||
dplyr::mutate(newColumnId=dplyr::cur_group_id()) %>% dplyr::ungroup() %>% | ||
dplyr::select(c('rowId', 'newColumnId')) %>% dplyr::rename(columnId=newColumnId) | ||
dplyr::group_by(columnId) %>% | ||
dplyr::collect() %>% | ||
dplyr::mutate(newColumnId = dplyr::cur_group_id()) %>% | ||
dplyr::ungroup() %>% | ||
dplyr::select(c("rowId", "newColumnId")) %>% | ||
dplyr::rename(columnId = newColumnId) | ||
# the fastest way I found so far to convert data using data.table | ||
# 1.5 min for 100k rows :( | ||
dt <- data.table::data.table(rows=dataCat$rowId, cols=dataCat$columnId) | ||
maxFeatures <- max(dt[, .N, by=rows][,N]) | ||
dt <- data.table::data.table(rows = dataCat$rowId, cols = dataCat$columnId) | ||
maxFeatures <- max(dt[, .N, by = rows][, N]) | ||
start <- Sys.time() | ||
tensorList <- lapply(1:max(data %>% dplyr::pull(rowId)), function(x) { | ||
torch::torch_tensor(dt[rows==x, cols]) | ||
}) | ||
torch::torch_tensor(dt[rows == x, cols]) | ||
}) | ||
self$lengths <- lengths | ||
self$cat <- torch::nn_utils_rnn_pad_sequence(tensorList, batch_first = T) | ||
delta <- Sys.time() - start | ||
ParallelLogger::logInfo("Data conversion for dataset took ", signif(delta, 3), " ", attr(delta, "units")) | ||
if (sum(numericalIndex) == 0) { | ||
self$num <- NULL | ||
} else { | ||
numericalData <- data %>% dplyr::filter(columnId %in% !! which(numericalIndex)) %>% dplyr::collect() | ||
numericalData <-numericalData %>% dplyr::group_by(columnId) %>% dplyr::mutate(newId = dplyr::cur_group_id()) | ||
indices <- torch::torch_tensor(cbind(numericalData$rowId, numericalData$newId), dtype=torch::torch_long())$t_() | ||
values <- torch::torch_tensor(numericalData$covariateValue,dtype=torch::torch_float32()) | ||
self$num <- torch::torch_sparse_coo_tensor(indices=indices, | ||
values=values, | ||
size=c(self$target$shape,sum(numericalIndex)))$to_dense() | ||
} else { | ||
numericalData <- data %>% | ||
dplyr::filter(columnId %in% !!which(numericalIndex)) %>% | ||
dplyr::collect() | ||
numericalData <- numericalData %>% | ||
dplyr::group_by(columnId) %>% | ||
dplyr::mutate(newId = dplyr::cur_group_id()) | ||
indices <- torch::torch_tensor(cbind(numericalData$rowId, numericalData$newId), dtype = torch::torch_long())$t_() | ||
values <- torch::torch_tensor(numericalData$covariateValue, dtype = torch::torch_float32()) | ||
self$num <- torch::torch_sparse_coo_tensor( | ||
indices = indices, | ||
values = values, | ||
size = c(self$target$shape, sum(numericalIndex)) | ||
)$to_dense() | ||
} | ||
if (self$cat$shape[1] != self$num$shape[1]) | ||
if (self$cat$shape[1] != self$num$shape[1]) { | ||
browser() | ||
} | ||
}, | ||
|
||
getNumericalIndex = function() { | ||
return( | ||
self$numericalIndex | ||
) | ||
}, | ||
|
||
numCatFeatures = function() { | ||
return ( | ||
return( | ||
sum(!self$numericalIndex) | ||
) | ||
}, | ||
|
||
numNumFeatures = function() { | ||
if (!is.null(self$num)) { | ||
if (!is.null(self$num)) { | ||
return(self$num$shape[2]) | ||
} else { | ||
} else { | ||
return(0) | ||
} | ||
} | ||
}, | ||
|
||
.getbatch = function(item) { | ||
if (length(item)==1) { | ||
if (length(item) == 1) { | ||
# add leading singleton dimension since models expects 2d tensors | ||
return(list(batch = list(cat = self$cat[item]$unsqueeze(1), | ||
num = self$num[item]$unsqueeze(1)), | ||
target = self$target[item]$unsqueeze(1))) | ||
} | ||
else { | ||
return(list(batch = list(cat = self$cat[item], | ||
num = self$num[item]), | ||
target = self$target[item]))} | ||
return(list( | ||
batch = list( | ||
cat = self$cat[item]$unsqueeze(1), | ||
num = self$num[item]$unsqueeze(1) | ||
), | ||
target = self$target[item]$unsqueeze(1) | ||
)) | ||
} else { | ||
return(list( | ||
batch = list( | ||
cat = self$cat[item], | ||
num = self$num[item] | ||
), | ||
target = self$target[item] | ||
)) | ||
} | ||
}, | ||
.length = function() { | ||
self$target$size()[[1]] # shape[1] | ||
} | ||
) | ||
|
||
|
||
|
Oops, something went wrong.