Skip to content

zyuh/BDR-main

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BDR-main

This repository is an official PyTorch implementation of "Balanced Destruction-Reconstruction Dynamics for Memory-replay Class Incremental Learning"

Getting Started

This framework is implemented under Pytorch. It's better to implement an independent virtual environment on machine like this:

conda create --name pybdr python=3.9
conda activate pybdr
conda install pytorch=1.2.1
conda install torchvision -c pytorch

Download the Datasets

CIFAR-100

It will be downloaded automatically by torchvision when running the experiments.

ImageNet-Subset

You may download the dataset using the following links like this or directly from:

ImageNet

See the terms of ImageNet here.

Running Experiments

Before training, you need to set the dataset path _BASE_DATA_PATH in ./dataset/dataset_config.py.

Here is an example of how to use the code of BDR for training.

CUDA_VISIBLE_DEVICES=0 python main_incremental.py --exp-name nc_first_50_ntask_6 \
	--datasets cifar100_icarl --num-tasks 6 --nc-first-task 50 --network resnet18_cifar --seed 1993 \
	--nepochs 160 --batch-size 128 --lr 0.1 --momentum 0.9 --weight-decay 5e-4 --decay-mile-stone 80 120 \
	--clipping -1 --results-path results --save-models \
	--approach lucir_cwd_BDR --lamb 5.0 --num-exemplars-per-class 20 --exemplar-selection herding \
	--aux-coef 0.5 --reject-threshold 1 --dist 0.5 \
	--cwd --BDR --m1 0.8 --m2 0.8\

Citation

If you find this repository useful to your research, please consider citing:

@misc{zhou2023balanced,
      title={Balanced Destruction-Reconstruction Dynamics for Memory-replay Class Incremental Learning}, 
      author={Yuhang Zhou and Jiangchao Yao and Feng Hong and Ya Zhang and Yanfeng Wang},
      year={2023},
      eprint={2308.01698},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

This repository is built based on FACIL and CwD. We thank the authors for releasing their codes.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published