-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8637cc5
commit 6c0bdb9
Showing
5 changed files
with
289 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
{ | ||
"prefix": "reproduce", | ||
"dataset": "cifar224", | ||
"memory_size": 2000, | ||
"memory_per_class": 20, | ||
"fixed_memory": false, | ||
"shuffle": true, | ||
"init_cls": 10, | ||
"increment": 10, | ||
"model_name": "simplecil", | ||
"convnet_type": "clip", | ||
"device": ["0"], | ||
"seed": [1993] | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
{ | ||
"prefix": "reproduce", | ||
"dataset": "cifar224", | ||
"memory_size": 2000, | ||
"memory_per_class": 20, | ||
"fixed_memory": false, | ||
"shuffle": true, | ||
"init_cls": 10, | ||
"increment": 10, | ||
"model_name": "zs_clip", | ||
"convnet_type": "clip", | ||
"device": ["0"], | ||
"seed": [1993] | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
import logging | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from torch.serialization import load | ||
from tqdm import tqdm | ||
from torch import optim | ||
from torch.nn import functional as F | ||
from torch.utils.data import DataLoader | ||
from utils.inc_net import SimpleVitNet | ||
from models.base import BaseLearner | ||
from utils.toolkit import target2onehot, tensor2numpy,get_attribute | ||
|
||
|
||
num_workers = 8 | ||
|
||
class Learner(BaseLearner): | ||
def __init__(self, args): | ||
super().__init__(args) | ||
self._network = SimpleVitNet(args, True) | ||
self.args=args | ||
|
||
self.batch_size= get_attribute(args,"batch_size", 48) | ||
self.init_lr= get_attribute(args,"init_lr", 0.01) | ||
self.weight_decay= get_attribute(args,"weight_decay", 0.0005) | ||
self.min_lr= get_attribute(args,"min_lr", 1e-8) | ||
|
||
def after_task(self): | ||
self._known_classes = self._total_classes | ||
|
||
def replace_fc(self,trainloader, model, args): | ||
model = model.eval() | ||
embedding_list = [] | ||
label_list = [] | ||
# data_list=[] | ||
with torch.no_grad(): | ||
for i, batch in enumerate(trainloader): | ||
(_,data,label)=batch | ||
data=data.to(self._device) | ||
label=label.to(self._device) | ||
embedding=model.convnet.encode_image(data) | ||
# embedding = embedding / embedding.norm(dim=-1, keepdim=True) | ||
embedding_list.append(embedding.cpu()) | ||
label_list.append(label.cpu()) | ||
embedding_list = torch.cat(embedding_list, dim=0) | ||
label_list = torch.cat(label_list, dim=0) | ||
|
||
class_list=np.unique(self.train_dataset.labels) | ||
for class_index in class_list: | ||
print('Replacing...',class_index) | ||
#print(class_index) | ||
data_index=(label_list==class_index).nonzero().squeeze(-1) | ||
embedding=embedding_list[data_index] | ||
proto=embedding.mean(0) | ||
self._network.fc.weight.data[class_index]=proto | ||
|
||
return model | ||
|
||
def incremental_train(self, data_manager): | ||
self._cur_task += 1 | ||
self._total_classes = self._known_classes + data_manager.get_task_size(self._cur_task) | ||
self._network.update_fc(self._total_classes) | ||
logging.info("Learning on {}-{}".format(self._known_classes, self._total_classes)) | ||
|
||
train_dataset = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes), source="train", | ||
mode="train", ) | ||
self.train_dataset = train_dataset | ||
self.data_manager = data_manager | ||
self.train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=num_workers) | ||
test_dataset = data_manager.get_dataset(np.arange(0, self._total_classes), source="test", mode="test") | ||
self.test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=num_workers) | ||
|
||
train_dataset_for_protonet = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes), | ||
source="train", mode="test", ) | ||
self.train_loader_for_protonet = DataLoader(train_dataset_for_protonet, batch_size=self.batch_size, | ||
shuffle=True, num_workers=num_workers) | ||
|
||
if len(self._multiple_gpus) > 1: | ||
print('Multiple GPUs') | ||
self._network = nn.DataParallel(self._network, self._multiple_gpus) | ||
self._train(self.train_loader, self.test_loader, self.train_loader_for_protonet) | ||
if len(self._multiple_gpus) > 1: | ||
self._network = self._network.module | ||
|
||
def _train(self, train_loader, test_loader, train_loader_for_protonet): | ||
|
||
self._network.to(self._device) | ||
self.replace_fc(train_loader_for_protonet, self._network, None) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
import logging | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from torch.serialization import load | ||
from tqdm import tqdm | ||
from torch import optim | ||
from torch.nn import functional as F | ||
from torch.utils.data import DataLoader | ||
from utils.inc_net import SimpleClipNet | ||
from models.base import BaseLearner | ||
from utils.toolkit import target2onehot, tensor2numpy, get_attribute, ClipLoss | ||
from utils.data_manager import LaionData | ||
|
||
# zero shot clip | ||
|
||
num_workers = 8 | ||
|
||
|
||
class Learner(BaseLearner): | ||
def __init__(self, args): | ||
super().__init__(args) | ||
|
||
self._network = SimpleClipNet(args, True) | ||
self.batch_size = get_attribute(args, "batch_size", 48) | ||
self.init_lr = get_attribute(args, "init_lr", 0.01) | ||
self.weight_decay = get_attribute(args, "weight_decay", 0.0005) | ||
self.min_lr = get_attribute(args, "min_lr", 1e-8) | ||
self.args = args | ||
|
||
|
||
def after_task(self): | ||
self._known_classes = self._total_classes | ||
|
||
def incremental_train(self, data_manager): | ||
self._cur_task += 1 | ||
self._total_classes = self._known_classes + data_manager.get_task_size(self._cur_task) | ||
self._network.update_fc(self._total_classes) | ||
logging.info("Learning on {}-{}".format(self._known_classes, self._total_classes)) | ||
|
||
train_dataset = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes), source="train", | ||
mode="train", ) | ||
self.train_dataset = train_dataset | ||
self.data_manager = data_manager | ||
self.train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=num_workers) | ||
test_dataset = data_manager.get_dataset(np.arange(0, self._total_classes), source="test", mode="test") | ||
self.test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=num_workers) | ||
|
||
# train_dataset_for_protonet=data_manager.get_dataset(np.arange(self._known_classes, self._total_classes),source="train", mode="test", ) | ||
# self.train_loader_for_protonet = DataLoader(train_dataset_for_protonet, batch_size=self.batch_size, shuffle=True, num_workers=num_workers) | ||
|
||
if len(self._multiple_gpus) > 1: | ||
print('Multiple GPUs') | ||
self._network = nn.DataParallel(self._network, self._multiple_gpus) | ||
|
||
if len(self._multiple_gpus) > 1: | ||
self._network = self._network.module | ||
|
||
self._network.to(self._device) | ||
|
||
def _compute_accuracy(self, model, loader): | ||
self._network.eval() | ||
class_to_label = self.data_manager._class_to_label | ||
templates = self.data_manager._data_to_prompt | ||
total_labels = class_to_label[:self._total_classes] # mask all known classes | ||
text_features = [] | ||
with torch.no_grad(): | ||
for l in total_labels: | ||
texts = [t.format(l) for t in templates] | ||
texts = self._network.tokenizer(texts).to(self._device) | ||
class_embeddings = self._network.convnet.encode_text(texts) # num_str, dim | ||
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) | ||
class_embeddings = class_embeddings.mean(dim=0) | ||
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) | ||
text_features.append(class_embeddings) | ||
text_features = torch.stack(text_features, dim=0) # num_classes, dim | ||
|
||
correct, total = 0, 0 | ||
for i, (_, inputs, targets) in enumerate(loader): | ||
inputs = inputs.to(self._device) | ||
with torch.no_grad(): | ||
# outputs = model(inputs)["logits"] | ||
with torch.no_grad(): | ||
# outputs = self._network(inputs)["logits"] | ||
image_features = self._network.convnet.encode_image(inputs) | ||
image_features /= image_features.norm(dim=-1, keepdim=True) # bs, dim | ||
outputs = image_features @ text_features.T # bs, num_classes | ||
predicts = torch.max(outputs, dim=1)[1] | ||
correct += (predicts.cpu() == targets).sum() | ||
total += len(targets) | ||
print('Accuracy: {:.2f}%'.format(correct * 100 / total)) | ||
return np.around(tensor2numpy(correct) * 100 / total, decimals=2) | ||
|
||
def _eval_cnn(self, loader): | ||
self._network.eval() | ||
class_to_label = self.data_manager._class_to_label | ||
templates = self.data_manager._data_to_prompt | ||
total_labels = class_to_label[:self._total_classes] # mask all known classes | ||
text_features = [] | ||
with torch.no_grad(): | ||
for l in total_labels: | ||
texts = [t.format(l) for t in templates] | ||
texts = self._network.tokenizer(texts).cuda() | ||
class_embeddings = self._network.convnet.encode_text(texts) | ||
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) | ||
class_embeddings = class_embeddings.mean(dim=0) | ||
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) | ||
text_features.append(class_embeddings) | ||
text_features = torch.stack(text_features, dim=0) | ||
|
||
y_pred, y_true = [], [] | ||
for _, (_, inputs, targets) in enumerate(loader): | ||
inputs = inputs.to(self._device) | ||
with torch.no_grad(): | ||
image_features = self._network.convnet.encode_image(inputs) | ||
image_features /= image_features.norm(dim=-1, keepdim=True) | ||
outputs = image_features @ text_features.T | ||
predicts = torch.topk( | ||
outputs, k=self.topk, dim=1, largest=True, sorted=True | ||
)[ | ||
1 | ||
] # [bs, topk] | ||
y_pred.append(predicts.cpu().numpy()) | ||
y_true.append(targets.cpu().numpy()) | ||
|
||
return np.concatenate(y_pred), np.concatenate(y_true) # [N, topk] | ||
|
||
def _eval_zero_shot(self): | ||
self._network.eval() | ||
class_to_label = self.data_manager._class_to_label | ||
templates = self.data_manager._data_to_prompt | ||
total_labels = class_to_label # [:self._total_classes] # mask all known classes | ||
text_features = [] | ||
with torch.no_grad(): | ||
for l in total_labels: | ||
texts = [t.format(l) for t in templates] | ||
texts = self._network.tokenizer(texts).cuda() | ||
# class_embeddings = self._network.encode_text(texts) | ||
class_embeddings = self._network.convnet.encode_text(texts) | ||
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) | ||
class_embeddings = class_embeddings.mean(dim=0) | ||
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) | ||
text_features.append(class_embeddings) | ||
text_features = torch.stack(text_features, dim=0) | ||
|
||
test_dataset = self.data_manager.get_dataset(np.arange(0, len(total_labels)), source="test", mode="test") | ||
loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=8) | ||
|
||
y_pred, y_true = [], [] | ||
logits = [] | ||
for _, (_, inputs, targets) in enumerate(loader): | ||
inputs = inputs.to(self._device) | ||
with torch.no_grad(): | ||
# image_features=self._network.encode_image(inputs) | ||
image_features = self._network.convnet.encode_image(inputs) | ||
image_features /= image_features.norm(dim=-1, keepdim=True) | ||
outputs = image_features @ text_features.T | ||
predicts = torch.topk(outputs, k=self.topk, dim=1, largest=True, sorted=True)[1] | ||
y_pred.append(predicts.cpu().numpy()) | ||
y_true.append(targets.cpu().numpy()) | ||
logits.append(outputs.cpu().numpy()) | ||
|
||
return np.concatenate(y_pred), np.concatenate(y_true) # [N, topk] | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters