Skip to content

A drowsy weekday afternoon at 3 PM, you might need this. Prepare your terminal and this code. With a single execution, you can take a mental break during work without your boss noticing!

Notifications You must be signed in to change notification settings

zayunsna/fake_compiler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fake-compiler

할 것 없이 매우 나른했던 휴일. Youtube도 볼게 없고, 나가기도 귀찮았던 어느날 아무생각없이 재밌겠다 하면서 코딩한 결과 나는 회사에서 월급루팡의 경지를 한층 더 진화시켰다.

그 이름은 바로 'Fake_Compiler' 목적은 매우 간단하다. '무언가 엄청난걸 컴파일 해주는 척 하기'

이 프로젝트는 이제 통합된 CLI 도구 fake-it으로 제공되며, 컴파일 및 머신러닝 학습 과정을 흉내내어 마치 생산적인 작업을 하는 것처럼 보이게 한다.

Features

  • Unified Interface: The project is now a single, installable command-line tool called fake-it.
  • Compiler Warnings: The compile command now randomly outputs compiler warnings for added realism.
  • Enhanced ML Trainer: The train command now shows a fake GPU detection message and a Keras-style model summary.
  • Expanded Vocabulary: The word list (words.txt) has been significantly expanded with more technical terms to make the output more believable.

[성공시]

[실패시]

Python으로 구현되었지만 C++ 컴파일 과정을 모방한다. 최대한 그럴듯하게 만들었더니 효과는 꽤나 좋았다.

Realistic을 증가시키기 위한 다른 아이디어가 있다면, 언제든 환영이다!

(그럴듯한 단어들을 모아놓은 words.txt는 위대한 GPT의 도움을 받아 수집했다.)

🛠️ Usage

This project has been refactored into a single, unified tool called fake-it.

You can run the simulations using the Python module syntax:

compile

Simulates a realistic-looking compilation process.

Execution python -m fake_it compile [options]

Options

Option Description Default
--theme Compiler theme (g++, clang, cl.exe) g++
--num_files Number of files to "compile" 150
--error_rate Probability of a compilation error 0.005
--warning_rate Probability of a compilation warning 0.02

Example python -m fake_it compile --theme clang --num_files 200


train

Simulates a machine learning model training process.

Execution python -m fake_it train [options]

Options

Option Description Default
--epochs Number of training epochs 25
--batch_size Batch size for training 64
--lr Learning rate 0.001
--dataset_size Total size of the fake dataset 10000
--chaos Chance of random temporary reversal in training progress 0.1

Example python -m fake_it train --epochs 50 --lr 0.01


Installation (Optional)

You can also install the script to make the fake-it command available directly in your terminal:

pip install -e .

After installation, you can run the commands like this:

fake-it compile --theme clang
fake-it train --epochs 100

About

A drowsy weekday afternoon at 3 PM, you might need this. Prepare your terminal and this code. With a single execution, you can take a mental break during work without your boss noticing!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages