-
Notifications
You must be signed in to change notification settings - Fork 238
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
chore: add ctgan colab notebook (#248)
Adds ctgan notebook example. Updates dataset url to kaggle for consistency. Updates open in colab url (substitutes vanilla gan example).
- Loading branch information
1 parent
dea3c83
commit 149e9ef
Showing
2 changed files
with
224 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
221 changes: 221 additions & 0 deletions
221
examples/regular/models/CTGAN_Adult_Census_Income_Data.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
}, | ||
"accelerator": "GPU", | ||
"gpuClass": "standard" | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# Note: You can select between running the Notebook on \"CPU\" or \"GPU\"\n", | ||
"# Click \"Runtime > Change Runtime time\" and set \"GPU\"" | ||
], | ||
"metadata": { | ||
"id": "Kh7c1F1J_sD7" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"#Uncomment to install ydata-synthetic lib\n", | ||
"#!pip install ydata-synthetic" | ||
], | ||
"metadata": { | ||
"id": "fwXSWiYu_tl0" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"# Tabular Synthetic Data Generation with CTGAN\n", | ||
"- CTGAN - Implemented accordingly with the [paper](https://arxiv.org/pdf/1907.00503.pdf)\n", | ||
"- This notebook is an example of how to use CTGAN to generate synthetic tabular data with numeric and categorical features.\n", | ||
"\n", | ||
"## Dataset\n", | ||
"\n", | ||
"- The data used is the [Adult Census Income](https://www.kaggle.com/datasets/uciml/adult-census-income) which we will fecth by importing the `pmlb` library (a wrapper for the Penn Machine Learning Benchmark data repository).\n" | ||
], | ||
"metadata": { | ||
"id": "6T8gjToi_yKA" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"from pmlb import fetch_data\n", | ||
"\n", | ||
"from ydata_synthetic.synthesizers.regular import RegularSynthesizer\n", | ||
"from ydata_synthetic.synthesizers import ModelParameters, TrainParameters" | ||
], | ||
"metadata": { | ||
"id": "Ix4gZ9iSCVZI" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## Load the data" | ||
], | ||
"metadata": { | ||
"id": "I0qyPwoECZ5x" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# Load data\n", | ||
"data = fetch_data('adult')\n", | ||
"num_cols = ['age', 'fnlwgt', 'capital-gain', 'capital-loss', 'hours-per-week']\n", | ||
"cat_cols = ['workclass','education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex',\n", | ||
" 'native-country', 'target']" | ||
], | ||
"metadata": { | ||
"id": "YeFPnJVOMVqd" | ||
}, | ||
"execution_count": 2, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## Define model and training parameters" | ||
], | ||
"metadata": { | ||
"id": "m6-dt5hLCgxG" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# Defining the training parameters\n", | ||
"batch_size = 500\n", | ||
"epochs = 500+1\n", | ||
"learning_rate = 2e-4\n", | ||
"beta_1 = 0.5\n", | ||
"beta_2 = 0.9\n", | ||
"\n", | ||
"ctgan_args = ModelParameters(batch_size=batch_size,\n", | ||
" lr=learning_rate,\n", | ||
" betas=(beta_1, beta_2))\n", | ||
"\n", | ||
"train_args = TrainParameters(epochs=epochs)" | ||
], | ||
"metadata": { | ||
"id": "9SsyBS2nMaSA" | ||
}, | ||
"execution_count": 1, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## Create and Train the CTGAN" | ||
], | ||
"metadata": { | ||
"id": "68MoepO0Cpx6" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args)\n", | ||
"synth.fit(data=data, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols)" | ||
], | ||
"metadata": { | ||
"id": "oIHMVgSZMg8_" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## Generate new synthetic data" | ||
], | ||
"metadata": { | ||
"id": "xHK-SRPyDUin" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"synth_data = synth.sample(1000)\n", | ||
"print(synth_data)" | ||
], | ||
"metadata": { | ||
"id": "0aa2g0RLMkqe", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"outputId": "01808aa4-a700-4385-e7df-b2f7abd162a0" | ||
}, | ||
"execution_count": 8, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"name": "stdout", | ||
"text": [ | ||
" age workclass fnlwgt education education-num \\\n", | ||
"0 38.753654 4 179993.565472 8 10.0 \n", | ||
"1 36.408844 4 245841.807958 9 10.0 \n", | ||
"2 56.251066 4 400895.076058 11 13.0 \n", | ||
"3 26.846605 4 240156.201048 11 10.0 \n", | ||
"4 29.083102 1 5601.059126 11 9.0 \n", | ||
".. ... ... ... ... ... \n", | ||
"995 79.281276 4 30664.183560 1 10.0 \n", | ||
"996 51.423132 4 414524.980527 1 10.0 \n", | ||
"997 17.342915 6 177716.451926 11 13.0 \n", | ||
"998 39.298867 4 132011.369567 15 12.0 \n", | ||
"999 46.977763 2 92662.371635 9 13.0 \n", | ||
"\n", | ||
" marital-status occupation relationship race sex capital-gain \\\n", | ||
"0 4 0 3 4 0 55.771499 \n", | ||
"1 6 7 0 4 1 124.337939 \n", | ||
"2 4 3 3 4 1 27.968087 \n", | ||
"3 4 6 1 4 0 25.065678 \n", | ||
"4 6 3 0 4 0 126.269337 \n", | ||
".. ... ... ... ... ... ... \n", | ||
"995 2 0 3 4 1 4.393001 \n", | ||
"996 4 7 3 2 0 54.841598 \n", | ||
"997 4 4 4 4 0 99.394428 \n", | ||
"998 4 14 1 4 1 97.834797 \n", | ||
"999 4 8 1 4 0 51.258308 \n", | ||
"\n", | ||
" capital-loss hours-per-week native-country target \n", | ||
"0 -1.271118 39.749641 39 1 \n", | ||
"1 -2.114950 44.488198 39 1 \n", | ||
"2 1.541738 40.042696 39 1 \n", | ||
"3 1.148560 39.952615 39 1 \n", | ||
"4 -1.786768 39.808085 39 0 \n", | ||
".. ... ... ... ... \n", | ||
"995 0.224015 50.580637 39 1 \n", | ||
"996 1.319341 4.441194 39 1 \n", | ||
"997 -5.231663 39.779674 39 1 \n", | ||
"998 1.595817 39.731359 13 1 \n", | ||
"999 1.129814 39.838415 39 1 \n", | ||
"\n", | ||
"[1000 rows x 15 columns]\n" | ||
] | ||
} | ||
] | ||
} | ||
] | ||
} |