Skip to content

Commit

Permalink
chore: add ctgan colab notebook (#248)
Browse files Browse the repository at this point in the history
Adds ctgan notebook example.
Updates dataset url to kaggle for consistency.
Updates open in colab url (substitutes vanilla gan example).
  • Loading branch information
miriamspsantos authored Mar 21, 2023
1 parent dea3c83 commit 149e9ef
Show file tree
Hide file tree
Showing 2 changed files with 224 additions and 2 deletions.
5 changes: 3 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,14 +78,15 @@ The below models are supported:

### Examples
Here you can find usage examples of the package and models to synthesize tabular data.
- Synthesizing the minority class with VanillaGAN on credit fraud dataset [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ydataai/ydata-synthetic/blob/master/examples/regular/gan_example.ipynb)

- Tabular synthetic data generation with CTGAN on adult census income dataset [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ydataai/ydata-synthetic/blob/master/examples/regular/models/CTGAN_Adult_Census_Income_Data.ipynb)
- Time Series synthetic data generation with TimeGAN on stock dataset [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ydataai/ydata-synthetic/blob/master/examples/timeseries/TimeGAN_Synthetic_stock_data.ipynb)
- More examples are continuously added and can be found in `/examples` directory.

### Datasets for you to experiment
Here are some example datasets for you to try with the synthesizers:
#### Tabular datasets
- [Adult census](https://archive.ics.uci.edu/ml/datasets/adult)
- [Adult Census Income](https://www.kaggle.com/datasets/uciml/adult-census-income)
- [Credit card fraud](https://www.kaggle.com/mlg-ulb/creditcardfraud)
- [Cardiovascular Disease dataset](https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset)

Expand Down
221 changes: 221 additions & 0 deletions examples/regular/models/CTGAN_Adult_Census_Income_Data.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU",
"gpuClass": "standard"
},
"cells": [
{
"cell_type": "code",
"source": [
"# Note: You can select between running the Notebook on \"CPU\" or \"GPU\"\n",
"# Click \"Runtime > Change Runtime time\" and set \"GPU\""
],
"metadata": {
"id": "Kh7c1F1J_sD7"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#Uncomment to install ydata-synthetic lib\n",
"#!pip install ydata-synthetic"
],
"metadata": {
"id": "fwXSWiYu_tl0"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Tabular Synthetic Data Generation with CTGAN\n",
"- CTGAN - Implemented accordingly with the [paper](https://arxiv.org/pdf/1907.00503.pdf)\n",
"- This notebook is an example of how to use CTGAN to generate synthetic tabular data with numeric and categorical features.\n",
"\n",
"## Dataset\n",
"\n",
"- The data used is the [Adult Census Income](https://www.kaggle.com/datasets/uciml/adult-census-income) which we will fecth by importing the `pmlb` library (a wrapper for the Penn Machine Learning Benchmark data repository).\n"
],
"metadata": {
"id": "6T8gjToi_yKA"
}
},
{
"cell_type": "code",
"source": [
"from pmlb import fetch_data\n",
"\n",
"from ydata_synthetic.synthesizers.regular import RegularSynthesizer\n",
"from ydata_synthetic.synthesizers import ModelParameters, TrainParameters"
],
"metadata": {
"id": "Ix4gZ9iSCVZI"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Load the data"
],
"metadata": {
"id": "I0qyPwoECZ5x"
}
},
{
"cell_type": "code",
"source": [
"# Load data\n",
"data = fetch_data('adult')\n",
"num_cols = ['age', 'fnlwgt', 'capital-gain', 'capital-loss', 'hours-per-week']\n",
"cat_cols = ['workclass','education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex',\n",
" 'native-country', 'target']"
],
"metadata": {
"id": "YeFPnJVOMVqd"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Define model and training parameters"
],
"metadata": {
"id": "m6-dt5hLCgxG"
}
},
{
"cell_type": "code",
"source": [
"# Defining the training parameters\n",
"batch_size = 500\n",
"epochs = 500+1\n",
"learning_rate = 2e-4\n",
"beta_1 = 0.5\n",
"beta_2 = 0.9\n",
"\n",
"ctgan_args = ModelParameters(batch_size=batch_size,\n",
" lr=learning_rate,\n",
" betas=(beta_1, beta_2))\n",
"\n",
"train_args = TrainParameters(epochs=epochs)"
],
"metadata": {
"id": "9SsyBS2nMaSA"
},
"execution_count": 1,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Create and Train the CTGAN"
],
"metadata": {
"id": "68MoepO0Cpx6"
}
},
{
"cell_type": "code",
"source": [
"synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args)\n",
"synth.fit(data=data, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols)"
],
"metadata": {
"id": "oIHMVgSZMg8_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Generate new synthetic data"
],
"metadata": {
"id": "xHK-SRPyDUin"
}
},
{
"cell_type": "code",
"source": [
"synth_data = synth.sample(1000)\n",
"print(synth_data)"
],
"metadata": {
"id": "0aa2g0RLMkqe",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "01808aa4-a700-4385-e7df-b2f7abd162a0"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" age workclass fnlwgt education education-num \\\n",
"0 38.753654 4 179993.565472 8 10.0 \n",
"1 36.408844 4 245841.807958 9 10.0 \n",
"2 56.251066 4 400895.076058 11 13.0 \n",
"3 26.846605 4 240156.201048 11 10.0 \n",
"4 29.083102 1 5601.059126 11 9.0 \n",
".. ... ... ... ... ... \n",
"995 79.281276 4 30664.183560 1 10.0 \n",
"996 51.423132 4 414524.980527 1 10.0 \n",
"997 17.342915 6 177716.451926 11 13.0 \n",
"998 39.298867 4 132011.369567 15 12.0 \n",
"999 46.977763 2 92662.371635 9 13.0 \n",
"\n",
" marital-status occupation relationship race sex capital-gain \\\n",
"0 4 0 3 4 0 55.771499 \n",
"1 6 7 0 4 1 124.337939 \n",
"2 4 3 3 4 1 27.968087 \n",
"3 4 6 1 4 0 25.065678 \n",
"4 6 3 0 4 0 126.269337 \n",
".. ... ... ... ... ... ... \n",
"995 2 0 3 4 1 4.393001 \n",
"996 4 7 3 2 0 54.841598 \n",
"997 4 4 4 4 0 99.394428 \n",
"998 4 14 1 4 1 97.834797 \n",
"999 4 8 1 4 0 51.258308 \n",
"\n",
" capital-loss hours-per-week native-country target \n",
"0 -1.271118 39.749641 39 1 \n",
"1 -2.114950 44.488198 39 1 \n",
"2 1.541738 40.042696 39 1 \n",
"3 1.148560 39.952615 39 1 \n",
"4 -1.786768 39.808085 39 0 \n",
".. ... ... ... ... \n",
"995 0.224015 50.580637 39 1 \n",
"996 1.319341 4.441194 39 1 \n",
"997 -5.231663 39.779674 39 1 \n",
"998 1.595817 39.731359 13 1 \n",
"999 1.129814 39.838415 39 1 \n",
"\n",
"[1000 rows x 15 columns]\n"
]
}
]
}
]
}

0 comments on commit 149e9ef

Please sign in to comment.