Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding frequentist numerical tests + Integrate StatsAPI #67

Merged
merged 7 commits into from
Dec 29, 2022
1 change: 1 addition & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
NLSolversBase = "d41bc354-129a-5804-8e4c-c37616107c6c"
Optim = "429524aa-4258-5aef-a3af-852621145aeb"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StatsAPI = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
StatsModels = "3eaba693-59b7-5ba5-a881-562e759f1c8d"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"
Expand Down
1 change: 1 addition & 0 deletions src/CRRao.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ module CRRao
using DataFrames, GLM, Turing, StatsModels, StatsBase
using StatsBase, Distributions, LinearAlgebra
using Optim, NLSolversBase, Random
import StatsBase: coef, coeftable, r2, adjr2, loglikelihood, aic, bic, predict, residuals, cooksdistance, fit

"""
```julia
Expand Down
4 changes: 2 additions & 2 deletions src/fitmodel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ FrequentistRegression{RegressionType}

Type to represent frequentist regression models returned by `fit` functions. This type is used internally by the package to represent all frequentist regression models. `RegressionType` is a `Symbol` representing the model class.
"""
struct FrequentistRegression{RegressionType}
struct FrequentistRegression{RegressionType} <: RegressionModel
model
formula::FormulaTerm
link
Expand All @@ -27,7 +27,7 @@ BayesianRegression{RegressionType}

Type to represent bayesian regression models returned by `fit` functions. This type is used internally by the package to represent all bayesian regression models. `RegressionType` is a `Symbol` representing the model class.
"""
struct BayesianRegression{RegressionType}
struct BayesianRegression{RegressionType} <: RegressionModel
chain
formula::FormulaTerm
link
Expand Down
2 changes: 1 addition & 1 deletion src/frequentist/getter.jl
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ function predict(container::FrequentistRegression{:LogisticRegression}, newdata:
return Probit_Link.(z)
elseif (container.link == GLM.CauchitLink)
return Cauchit_Link.(z)
elseif (container.link == GLM.Cloglog)
elseif (container.link == GLM.CloglogLink)
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I made a change to src/frequentist/getter.jl - I think it should be CloglogLink instead of Cloglog.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

okay -- great. thanks.

return Cloglog_Link.(z)
end
end
Expand Down
1 change: 1 addition & 0 deletions test/Project.toml
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
[deps]
GLM = "38e38edf-8417-5370-95a0-9cbb8c7f171a"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
RDatasets = "ce6b1742-4840-55fa-b093-852dadbb1d8b"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Expand Down
16 changes: 16 additions & 0 deletions test/numerical/frequentist/LinearRegression.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
mtcars = dataset("datasets", "mtcars")

tests = [
(@formula(MPG ~ HP + WT + Gear), 157.052778719219475, 164.381458233218098),
(@formula(MPG ~ 0 + HP + WT + Gear), 186.905400588726366, 192.768344199925281),
(@formula(MPG ~ HP + HP^2 + WT + WT * HP), 145.922971789355415, 154.717387206153774),
(@formula(log(MPG) ~ log(HP) + log(WT)), -48.353276320549490, -42.490332709350582)
]

for (test_formula, test_aic, test_bic) in tests
crrao_model = fit(test_formula, mtcars, LinearRegression())
glm_model = lm(test_formula, mtcars)
compare_models(crrao_model, glm_model, mtcars)
@test isapprox(aic(crrao_model), test_aic)
@test isapprox(bic(crrao_model), test_bic)
end
37 changes: 37 additions & 0 deletions test/numerical/frequentist/LogisticRegression.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
turnout = dataset("Zelig", "turnout")

tests = [
(Logit(), LogitLink(), [
(@formula(Vote ~ Age + Race + Income + Educate), 2033.981263703107970, 2061.985776000818532),
(@formula(Vote ~ 0 + Age + Race + Income + Educate), 2033.981263703107970, 2061.985776000818532),
(@formula(Vote ~ Age + Age^2 + Race + Income * Educate), 2023.429129040224325, 2062.635446257018884),
(@formula(Vote ~ log(Age) + Educate), 2069.570124645007581, 2086.372832023633691)
]),
(Probit(), ProbitLink(), [
(@formula(Vote ~ Age + Race + Income + Educate), 2034.196513858159960, 2062.201026155870295),
(@formula(Vote ~ 0 + Age + Race + Income + Educate), 2034.196513858159960, 2062.201026155870295),
(@formula(Vote ~ Age + Age^2 + Race + Income * Educate), 2023.024253890667069, 2062.230571107461856),
(@formula(Vote ~ log(Age) + Educate), 2068.082640703962625, 2084.885348082588735)
]),
(Cloglog(), CloglogLink(), [
(@formula(Vote ~ Age + Race + Income + Educate), 2036.690120606579512, 2064.694632904289847),
(@formula(Vote ~ 0 + Age + Race + Income + Educate), 2036.690120606579512, 2064.694632904289847),
(@formula(Vote ~ log(Age) + Educate), 2067.047234348701750, 2083.849941727327860)
]),
(Cauchit(), CauchitLink(), [
(@formula(Vote ~ Age + Race + Income + Educate), 2050.941937867712113, 2078.946450165422448),
(@formula(Vote ~ 0 + Age + Race + Income + Educate), 2050.941937867712113, 2078.946450165422448),
(@formula(Vote ~ Age + Age^2 + Race + Income * Educate), 2036.876992804688371, 2076.083310021483157),
(@formula(Vote ~ log(Age) + Educate), 2085.365660144347203, 2102.168367522973313)
])
]

for (crrao_link, glm_link, formulae_and_values) in tests
for (test_formula, test_aic, test_bic) in formulae_and_values
crrao_model = fit(test_formula, turnout, LogisticRegression(), crrao_link)
glm_model = glm(test_formula, turnout, Binomial(), glm_link)
compare_models(crrao_model, glm_model, turnout)
@test isapprox(aic(crrao_model), test_aic)
@test isapprox(bic(crrao_model), test_bic)
end
end
16 changes: 16 additions & 0 deletions test/numerical/frequentist/NegBinomialRegression.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
sanction = dataset("Zelig", "sanction")

tests = [
(@formula(Num ~ Target + Coop + NCost), 344.8795500751855, 361.37651186201265),
(@formula(Num ~ 0 + Target + Coop + NCost), 344.87955007518536, 361.37651186201253),
(@formula(Num ~ Target + Target^2 + Coop + Coop * Target), 362.262357097934, 376.40261005807156),
(@formula(Num ~ log(Target) + log(Coop)), 367.1949690199781, 376.6218043267365)
]

for (test_formula, test_aic, test_bic) in tests
crrao_model = fit(test_formula, sanction, NegBinomRegression())
glm_model = negbin(test_formula, sanction, LogLink())
compare_models(crrao_model, glm_model, sanction)
@test isapprox(aic(crrao_model), test_aic)
@test isapprox(bic(crrao_model), test_bic)
end
16 changes: 16 additions & 0 deletions test/numerical/frequentist/PoissonRegression.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
sanction = dataset("Zelig", "sanction")

tests = [
(@formula(Num ~ Target + Coop + NCost), 580.673868966946884, 594.814121927084443),
(@formula(Num ~ 0 + Target + Coop + NCost), 580.673868966946770, 594.814121927084329),
(@formula(Num ~ Target + Target^2 + Coop + Coop * Target), 871.418230125844502, 883.201774259292506),
(@formula(Num ~ log(Target) + log(Coop)), 944.326386272138961, 951.396512752207741)
]

for (test_formula, test_aic, test_bic) in tests
crrao_model = fit(test_formula, sanction, PoissonRegression())
glm_model = glm(test_formula, sanction, Poisson(), LogLink())
compare_models(crrao_model, glm_model, sanction)
@test isapprox(aic(crrao_model), test_aic)
@test isapprox(bic(crrao_model), test_bic)
end
20 changes: 20 additions & 0 deletions test/numerical/frequentist/tests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
function compare_models(crrao_model, glm_model, df)
@test isapprox(coeftable(crrao_model).cols, coeftable(glm_model).cols)
@test isapprox(predict(crrao_model, df), predict(glm_model, df))
end

@testset "Linear Regression" begin
include("LinearRegression.jl")
end

@testset "Logistic Regression" begin
include("LogisticRegression.jl")
end

@testset "Poisson Regression" begin
include("PoissonRegression.jl")
end

@testset "Negative Binomial Regression" begin
include("NegBinomialRegression.jl")
end
8 changes: 7 additions & 1 deletion test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
using CRRao, Test, StableRNGs, Logging, RDatasets, StatsModels
using CRRao, Test, StableRNGs, Logging, RDatasets, StatsModels, GLM

Logging.disable_logging(Logging.Warn)

Expand All @@ -23,4 +23,10 @@ CRRao.set_rng(StableRNG(123))
include("basic/NegBinomialRegression.jl")
end
end

@testset "Numerical Tests" begin
@testset "Frequentist" begin
include("numerical/frequentist/tests.jl")
end
end
end