Skip to content

Commit

Permalink
Merge pull request #147 from ayushpatnaikgit/main
Browse files Browse the repository at this point in the history
Fix failing CI tests
  • Loading branch information
ShouvikGhosh2048 authored Oct 23, 2024
2 parents 6488b11 + 64afca2 commit e6fec62
Show file tree
Hide file tree
Showing 7 changed files with 30 additions and 15 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "CRRao"
uuid = "49d1be55-416f-4ec4-9ddf-53cbbcddc063"
authors = ["xKDR Forum, Sourish Das"]
version = "0.1.0"
version = "0.1.1"

[deps]
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Expand Down
3 changes: 1 addition & 2 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,7 @@ makedocs(;
"Frequentist Regression Models" => "api/frequentist_regression.md",
"Bayesian Regression Models" => "api/bayesian_regression.md"
]
],
strict = :doctest
]
)

deploydocs(;
Expand Down
5 changes: 3 additions & 2 deletions docs/src/api/bayesian_regression.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ BayesianRegression

### Linear Regression with User Specific Gaussian Prior
```@docs
fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, beta_prior_mean::Vector{Float64}, sim_size::Int64 = 1000)
fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, alpha_prior_sd::Float64, beta_prior_mean::Vector{Float64}, beta_prior_sd::Vector{Float64}, sim_size::Int64 = 1000)
```

Expand Down Expand Up @@ -80,7 +81,7 @@ fit(formula::FormulaTerm, data::DataFrame, modelClass::NegBinomRegression, prior

### Negative Binomial Regression with HorseShoe Prior
```@docs
fit(formula::FormulaTerm,data::DataFrame,modelClass::NegBinomRegression,prior::Prior_HorseShoe,sim_size::Int64 = 1000)
fit(formula::FormulaTerm,data::DataFrame,modelClass::NegBinomRegression,prior::Prior_HorseShoe, h::Float64 = 1.0, sim_size::Int64 = 1000)
```

## Poisson Regression
Expand All @@ -105,4 +106,4 @@ fit(formula::FormulaTerm, data::DataFrame, modelClass::PoissonRegression, prior:
### Poisson Regression with Horse Shoe Prior
```@docs
fit(formula::FormulaTerm,data::DataFrame,modelClass::PoissonRegression,prior::Prior_HorseShoe,sim_size::Int64 = 1000)
```
```
16 changes: 15 additions & 1 deletion docs/src/api/frequentist_regression.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,19 @@ FrequentistRegression
## Linear Regression
```@docs
fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression)
fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, bootstrap::Boot_Residual, sim_size::Int64 = 1000)
```

### With bootstrap
Fitting linear regression while estimating the standard error using bootstrap statistics.
```@docs
Boot_Residual
```

### Breusch-Pagan Lagrange Multiplier test for heteroscedasticity
Breusch-Pagan tests the homoscedasticity assumption of the residual variance in linear regression.
```@docs
BPTest(container::FrequentistRegression, data::DataFrame)
```

## Logistic Regression
Expand All @@ -30,6 +43,7 @@ fit(formula::FormulaTerm, data::DataFrame, modelClass::PoissonRegression)
## Extended functions from [StatsAPI.jl](https://github.com/JuliaStats/StatsAPI.jl)

```@docs
coef(container::FrequentistRegression)
coeftable(container::FrequentistRegression)
r2(container::FrequentistRegression)
adjr2(container::FrequentistRegression)
Expand All @@ -40,4 +54,4 @@ sigma(container::FrequentistRegression)
predict(container::FrequentistRegression)
residuals(container::FrequentistRegression)
cooksdistance(container::FrequentistRegression)
```
```
2 changes: 1 addition & 1 deletion docs/src/man/guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ sigma(model)

We can also get the predicted response of the model, along with other measures like the vector of Cook's distances using the [`predict`](@ref) and [`cooksdistance`](@ref) functions exported by CRRao. Here's a plot of the vector of Cook's distances.

```@example ols_linear_regression
```@repl ols_linear_regression
plot(cooksdistance(model))
```

Expand Down
13 changes: 7 additions & 6 deletions src/bayesian/negativebinomial_regression.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ end

"""
```julia
fit(formula::FormulaTerm, data::DataFrame, modelClass::NegBinomRegression, prior::Prior_Ridge, h::Float64 = 0.1, sim_size::Int64 = 1000)
fit(formula::FormulaTerm, data::DataFrame, modelClass::NegBinomRegression, prior::Prior_Ridge, h::Float64 = 1.0, sim_size::Int64 = 1000)
```
Fit a Bayesian Negative Binomial Regression model on the input data with a Ridge prior.
Expand Down Expand Up @@ -103,7 +103,7 @@ function fit(
data::DataFrame,
modelClass::NegBinomRegression,
prior::Prior_Ridge,
h::Float64 = 0.1,
h::Float64 = 1.0,
sim_size::Int64 = 1000
)
@model NegativeBinomialRegression(X, y) = begin
Expand Down Expand Up @@ -218,7 +218,7 @@ function fit(
data::DataFrame,
modelClass::NegBinomRegression,
prior::Prior_Laplace,
h::Float64 = 0.1,
h::Float64 = 1.0,
sim_size::Int64 = 1000
)
@model NegativeBinomialRegression(X, y) = begin
Expand Down Expand Up @@ -511,6 +511,7 @@ function fit(
data::DataFrame,
modelClass::NegBinomRegression,
prior::Prior_HorseShoe,
h::Float64 = 1.0,
sim_size::Int64 = 1000
)
@model NegativeBinomialRegression(X, y) = begin
Expand All @@ -523,11 +524,11 @@ function fit(

τ ~ halfcauchy ## Global Shrinkage
λ ~ filldist(halfcauchy, p) ## Local Shrinkage
σ ~ halfcauchy
σ ~ InverseGamma(h, h)
#α ~ Normal(0, τ * σ)
β0 = repeat([0], p) ## prior mean
β ~ MvNormal(β0, λ * τ *σ)

# β ~ MvNormal(β0, λ * τ *σ)
β ~ MvNormal(β0, λ * τ)

## link
#z = α .+ X * β
Expand Down
4 changes: 2 additions & 2 deletions test/numerical/bayesian/LogisticRegression.jl
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,8 @@ tests = [
(
Prior_HorseShoe(),
(
(Logit(), 0.38683395333332327),
(Probit(), 0.38253233489484173),
(Logit(), 0.7599999999740501),
(Probit(), 0.7580564600751047),
(Cloglog(), 0.7667553778881738),
(Cauchit(), 0.7706755564626601)
)
Expand Down

0 comments on commit e6fec62

Please sign in to comment.