Skip to content

withoutbg/alpha-matting-evaluation-benchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 

Repository files navigation

Alpha Matting Algorithm Performance Comparison

A comprehensive comparison of alpha matting algorithms based on standardized performance metrics. This dataset provides researchers and developers with transparent benchmarking data to evaluate and compare different alpha matting approaches.

Performance Metrics

The algorithms are evaluated using four key metrics:

  • SAD (Sum of Absolute Differences): Measures the absolute difference between predicted and ground truth alpha values. Lower values indicate better performance.
  • MSE (Mean Squared Error): Calculates the average squared differences between predicted and ground truth values. Lower values indicate better performance.
  • Gradient: Evaluates the preservation of edge information in the alpha matte. Lower values indicate better edge preservation.
  • Connectivity Error: Measures the connectivity of the resulting alpha matte. Lower values indicate better connectivity preservation.

Algorithm Performance Comparison

Algorithm SAD MSE Gradient Connectivity Error
TransMatting 3.1 2.3 2.8 6.2
TMFNet 3.4 4.0 3.9 15.0
IamAlpha 4.4 4.8 4.8 12.8
LFPNet 4.7 4.1 2.8 11.2
TIMI-Net 4.9 5.5 6.2 8.8
SIM 5.8 6.3 6.2 9.6
PIIAMatting 9.1 11.3 11.8 17.7
HDMatt 10.5 10.3 8.7 29.9
AdaMatting 12.6 12.8 12.3 22.3
A2U Matting 12.8 14.6 11.3 26.3
SampleNet Matting 13.0 13.2 14.2 25.4
FGI Matting 13.1 - - -
GCA Matting 14.2 14.5 12.8 21.7
ATNet Matting 15.4 14.9 18.1 24.9
VDRN Matting 15.8 17.4 18.7 22.4
Deep Matting 16.1 18.1 22.5 20.0
Information-flow matting 17.9 18.7 25.3 30.2
IndexNet Matting 19.3 22.0 17.6 24.7
DCNN Matting 20.0 19.2 23.7 26.7
AlphaGAN 20.9 23.2 22.4 35.8
Context-aware Matting 22.8 16.7 13.7 25.2
Three-layer graph matting 25.0 24.4 27.3 26.3
ATPM Matting 27.3 29.4 31.5 34.0
Three Stages Matting 28.5 25.7 31.4 25.9
CSC Matting 30.0 34.1 34.8 37.1
LNSP Matting 30.1 26.3 28.9 19.4
Graph-based sparse matting 31.1 30.7 28.1 40.0
KL-Divergence Based Sparse Sampling 31.2 29.8 28.2 40.0
Patch-based Matting 31.3 28.1 28.1 33.2
TSPS-RV Matting 32.6 31.6 35.4 31.5
Iterative Transductive Matting 33.2 37.1 41.3 50.0
SVR Matting 33.8 30.4 32.3 26.5
Comprehensive sampling 33.8 31.4 29.4 42.8
Comprehensive Weighted Color and Texture 34.3 32.2 34.4 37.8
Sparse coded matting 34.8 34.7 31.8 38.5
LocalSamplingAndKnnClassification 36.3 34.5 38.7 27.8
Weighted Color and Texture Matting 37.0 36.4 40.4 38.4
CCM 37.3 30.3 32.5 18.7
LNCLM matting 37.3 37.1 39.7 37.4
Shared Matting 37.5 37.5 33.5 37.7
Global Sampling Matting 39.8 36.3 32.8 34.5
SRLO Matting 40.8 42.5 42.6 46.3
Segmentation-based matting 41.1 40.4 32.6 34.3
Improved color matting 42.3 40.8 33.3 27.6
KNN Matting 42.6 37.5 44.3 33.9
Local Spline Regression (LSR) 42.7 44.0 44.2 28.9
Global Sampling Matting (filter version) 42.9 44.5 38.5 46.8
Learning Based Matting 44.0 43.7 43.3 30.8
LMSPIR 45.2 44.9 43.5 43.2
Shared Matting (Real Time) 45.6 47.0 48.5 45.5
Closed-Form Matting 46.0 44.6 44.1 19.2
Improving Sampling Criterion 49.7 41.6 42.5 34.2
Cell-based matting Laplacian 50.3 49.8 51.0 29.0
Large Kernel Matting 50.5 48.2 46.3 25.6
Robust Matting 51.2 49.6 45.3 45.0
SPS matting 53.3 44.5 40.7 42.1
High-res matting 54.2 51.5 46.9 35.3
Transfusive Weights 54.7 51.3 54.2 12.8
Random Walk Matting 57.9 57.4 55.5 8.7
Geodesic Matting 59.1 - - 52.2
Iterative BP Matting 60.2 - - 52.5
Easy Matting 60.6 - - -
Improved Bayesian 61.1 - - -
Bayesian Matting 62.4 - - -
Poisson Matting 64.8 - - -

Top Performing Algorithms

Overall Best Performers (by SAD metric)

  1. TransMatting - SAD: 3.1, MSE: 2.3
  2. TMFNet - SAD: 3.4, MSE: 4.0
  3. IamAlpha - SAD: 4.4, MSE: 4.8
  4. LFPNet - SAD: 4.7, MSE: 4.1
  5. TIMI-Net - SAD: 4.9, MSE: 5.5

Best Gradient Preservation

  1. TransMatting - Gradient: 2.8
  2. LFPNet - Gradient: 2.8
  3. TMFNet - Gradient: 3.9

Best Connectivity Preservation

  1. TransMatting - Connectivity Error: 6.2
  2. TIMI-Net - Connectivity Error: 8.8
  3. Random Walk Matting - Connectivity Error: 8.7

Data Notes

  • Some algorithms have incomplete metric data, indicated by "-" in the table
  • Lower values indicate better performance across all metrics
  • This comparison is based on standardized test datasets commonly used in alpha matting research
  • Results may vary depending on specific use cases and image characteristics
  • Data source: This comparison data was taken from imagematting.com

Learn More

For detailed metric explanations and research context, see: Alpha Matting Evaluation Benchmark

About

A comprehensive comparison of alpha matting algorithms and models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published