Generate cross-platform agent artifacts (SKILL.md, AGENTS.md) using LLM intelligence.
pip install -e . # Install
ct ls # List 80 skills
ct search kubernetes # Find skills
ct show <slug> --full # View details
ct validate ./skills/<slug>/ # Validate skillNeed LLM generation? Set ANTHROPIC_API_KEY then: ct generate skill --from-mcp config.json
Transform MCP servers and repositories into SKILL.md and AGENTS.md files compatible with Claude, Codex, Gemini, and other AI agents.
This repository contains:
- 80 production-ready skills covering security, cloud, DevOps, testing, and more
- 18 orchestrator agents that coordinate multiple skills for complex workflows
- CLI tooling to generate, validate, and manage your own skills
- Python 3.11 or higher
- Git
- (Optional)
ANTHROPIC_API_KEYfor LLM-powered generation
# Clone the repository
git clone https://github.com/williamzujkowski/cognitive-toolworks.git
cd cognitive-toolworks
# Create virtual environment (recommended)
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
# Install
pip install -e .
# Verify installation
ct version# Explore available skills (no API key needed)
ct ls # List all 80 skills
ct search kubernetes # Search for skills
ct show security-appsec-validator # View skill details
# Validate a skill
ct validate ./skills/api-design-validator/
# Generate a skill from a README (no API key needed)
ct generate skill --from-readme ./README.md --name my-skill --output ./my-skill/| Feature | Status | API Key Required |
|---|---|---|
Skill Discovery (ct ls, ct search, ct show) |
Stable | No |
MCP Introspection (ct introspect mcp) |
Stable | No |
OpenAPI Introspection (ct introspect openapi) |
Stable | No |
README Source (ct generate skill --from-readme) |
Stable | No |
Skill Validation (ct validate) |
Stable | No |
Security Scanning (ct security-scan) |
Stable | No |
Skill Generation (ct generate skill --from-mcp) |
Stable | Yes |
Skill Optimization (ct optimize) |
Stable | Yes |
AGENTS.md Generation (ct generate agents-md) |
Beta | Yes |
Skills are self-contained instruction sets that teach AI agents how to perform specific tasks. Each skill follows the Anthropic SKILL.md format with:
- Trigger conditions: When the skill should activate
- Procedures: Step-by-step instructions (T1/T2/T3 tiers)
- Quality gates: Validation rules and constraints
# List all skills
ct ls
# Filter by domain
ct ls --domain security # 11 security skills
ct ls --domain cloud # 8 cloud architecture skills
ct ls --domain testing # 5 testing skills
# Search across all skills
ct search "API design"
ct search kubernetes
# View full skill details
ct show api-graphql-designer --fullAgents are orchestrators that coordinate multiple skills to complete complex workflows. They follow a 4-step pattern:
- Plan: Parse request, identify required skills
- Execute: Invoke skills in sequence
- Validate: Check outputs against quality gates
- Report: Return structured results
# View agents index
cat index/agents-index.json | jq '.[] | .slug'
# View agent details
ct show cloud-aws-orchestrator --fullMake skills available to your AI coding assistants:
Claude Code auto-discovers skills from ~/.claude/skills/ and agents from ~/.claude/agents/.
# Recommended: Use sync script for global installation
./scripts/sync-to-claude.sh
# This creates symlinks with ct- prefix:
# ~/.claude/skills/ct-api-design-validator → ./skills/api-design-validator/
# ~/.claude/agents/ct-security-auditor.md → ./agents/security-auditor/AGENT.md
# To uninstall:
./scripts/sync-to-claude.sh --uninstallAfter syncing, skills and agents are auto-discoverable:
- Skills: Claude uses them automatically based on context
- Agents: Available via
Task(subagent_type="ct-security-auditor", ...)
Verify: Ask Claude Code "What skills are available?" or check ls ~/.claude/skills/ct-*
Codex CLI uses AGENTS.md for project instructions and supports fallback files.
# This repo already includes AGENTS.md - Codex will discover it automatically
# To also support CLAUDE.md, add to ~/.codex/config.toml:
# project_doc_fallback_filenames = ["CLAUDE.md", "AGENTS.md"]Gemini CLI uses GEMINI.md hierarchy with configurable context files.
# Option 1: Create settings to recognize AGENTS.md
mkdir -p ~/.gemini
cat > ~/.gemini/settings.json << 'EOF'
{
"context": {
"fileName": ["AGENTS.md", "GEMINI.md"]
}
}
EOF
# Option 2: Create project-level GEMINI.md
cp AGENTS.md GEMINI.mdct ls # List all skills
ct ls --domain <domain> # Filter by domain
ct ls --format json # JSON output
ct search <term> # Search skills/agents
ct search <term> --format json # JSON output
ct show <slug> # View skill/agent summary
ct show <slug> --full # View complete skill/agent# Generate skill from MCP server (requires API key)
ct generate skill --from-mcp config.json --output ./my-skill/
# Generate skill from README (no API key)
ct generate skill --from-readme README.md --name my-skill --output ./my-skill/
# Generate skill from OpenAPI spec (requires API key)
ct generate skill --from-openapi spec.json --output ./my-skill/
# Generate AGENTS.md for a repository (requires API key)
ct generate agents-md --repo . --output ./AGENTS.mdct validate ./path/to/skill/ # Validate skill structure
ct validate ./skill/ --verbose # Verbose output
ct validate ./skill/ --platforms anthropic,openai # Multi-platform
ct analyze ./path/to/skill/ # Token and quality analysis
ct analyze ./skill/ --full-report # Detailed report
ct security-scan ./skills/ # Scan for security issues
ct security-scan ./skills/ --recursive # Recursive scan# Preview optimization (requires API key)
ct optimize ./my-skill/ --tier T2 --dry-run
# Apply optimization in-place
ct optimize ./my-skill/ --tier T2 --in-place# Extract tool definitions from MCP server
ct introspect mcp config.json --output analysis.json
# Extract endpoints from OpenAPI spec
ct introspect openapi spec.json --output analysis.jsonSources → LLM Analysis → Generation → Validation
─────────────────────────────────────────────────────────────────────
• MCP Server Semantic SKILL.md Anthropic
• OpenAPI Spec Analysis AGENTS.md OpenAI
• README Workflows llms.txt
Design Principles:
- Progressive Disclosure: T1 (≤2k tokens) → T2 (≤6k tokens) → T3 (≤12k tokens)
- Cross-Platform: Generate once, validate for Anthropic and OpenAI
- Security-First: Pattern detection for credentials, shell injection, file access
Built-in security scanning detects:
- Unrestricted file system access
- Network calls without allowlisting
- Shell command injection vectors
- Sensitive data exposure
ct security-scan ./skills/ --recursiveThis repository includes Claude Code slash commands:
# Available in Claude Code CLI
/skill-validate # Validate a skill against CLAUDE.md standards
/skill-create # Create a new skill with proper structure
/skill-search # Search skills index
/generate-skill # Generate skill from various sources
/rebuild-index # Rebuild skills and agents indices
/run-maintenance # Run full maintenance workflowSlash commands are defined in .claude/commands/.
See llms.txt for LLM-friendly project overview.
This repository uses a centralized architecture for AI assistant instructions:
AGENTS.md (Canonical Source)
├── Universal dev workflow (60k+ tool support)
├── Setup, testing, PR, coding conventions
└── Imported by CLI-specific files
CLAUDE.md (Skills Meta-Rules) GEMINI.md (Gemini Wrapper)
├── @./AGENTS.md import ├── @./AGENTS.md import
├── Naming conventions (§2A) └── Gemini-specific commands
├── Token budgets (§0A-0C)
└── SKILL.md format (§3)
| File | Purpose | Tool Support |
|---|---|---|
| AGENTS.md | Canonical development workflow | Codex, Cursor, Aider, 60k+ tools |
| CLAUDE.md | Skills/agents library meta-rules | Claude Code |
| GEMINI.md | Gemini CLI wrapper | Gemini CLI |
| Change Type | Update File |
|---|---|
| Dev workflow, testing, PR format | AGENTS.md |
| Skill naming, token budgets, SKILL.md format | CLAUDE.md |
| Gemini-specific CLI commands | GEMINI.md |
# Run all checks (tokens, imports, conflicts, cross-refs)
python tooling/validate_instructions.py --all
# Check specific aspects
python tooling/validate_instructions.py --check-chain # Import chain
python tooling/validate_instructions.py --check-conflicts # PR format conflictsContributions welcome! See CONTRIBUTING.md for guidelines.
# Setup development environment
pip install -e ".[dev]"
pre-commit install
# Run tests
pytest
# Run linting
ruff check . && ruff format . && mypy src/Apache License 2.0 - see LICENSE for details.
Built for the AI agent ecosystem:
Made by William Zujkowski