A scikit-learn inspired machine learning library in Rust.
- Linear Regression
- Evaluation Metrics (MSE, MAE, R²)
- Type-safe API
- Comprehensive error handling
[dependencies]
sklearn-rs = "0.1.0"
use sklearn_rs::{LinearRegression, Estimator, Predictor};
use ndarray::array;
fn main() -> Result<(), Box<dyn std::error::Error>> {
let x = array![[1.0], [2.0], [3.0]];
let y = array![2.0, 4.0, 6.0];
let model = LinearRegression::default().fit(&x, &y)?;
let predictions = model.predict(&x)?;
println!("Predictions: {:?}", predictions);
Ok(())
}
License
MIT
# sklearn-rs
[](https://crates.io/crates/sklearn-rs)
[](https://docs.rs/sklearn-rs)
[](https://opensource.org/licenses/MIT)
一个受 scikit-learn 启发的 Rust 机器学习库。
## 功能特性
- 🚀 **线性回归** - 完整的线性回归实现
- 📊 **评估指标** - MSE, MAE, R² 分数
- 🔒 **类型安全** - Rust 强类型系统保障
- 🛡️ **错误处理** - 完善的验证和错误信息
- 📚 **中文文档** - 完整的中文文档支持
## 安装
在 `Cargo.toml` 中添加:
```toml
[dependencies]
sklearn-rs = "0.1.0"
ndarray = "0.15"