Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make the Dataset type alias generic #319

Merged
merged 1 commit into from
Oct 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 3 additions & 10 deletions src/algs/adv/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ def discriminator_step(
raise NotImplementedError()

def encoder_step(
self, comp: Components, *, batch_tr: TernarySample, x_dep: Tensor, warmup: bool
self, comp: Components, *, batch_tr: TernarySample[Tensor], x_dep: Tensor, warmup: bool
) -> defaultdict[str, float]:
logging_dict: defaultdict[str, float] = defaultdict(float)
for _ in range(self.ga_steps):
Expand Down Expand Up @@ -247,7 +247,7 @@ def _predictor_loss(

@abstractmethod
def _encoder_loss(
self, comp: Components, *, x_dep: Tensor, batch_tr: TernarySample, warmup: bool
self, comp: Components, *, x_dep: Tensor, batch_tr: TernarySample[Tensor], warmup: bool
) -> tuple[Tensor, dict[str, float]]:
raise NotImplementedError()

Expand Down Expand Up @@ -297,14 +297,7 @@ def fit(self, dm: DataModule, *, ae: SplitLatentAe, disc: Model, evaluator: Eval
comp = Components(ae=ae, disc=disc, pred_y=pred_y, pred_s=pred_s)
comp.to(self.device)

val_freq = max(
(
self.val_freq
if isinstance(self.val_freq, int)
else round(self.val_freq * self.steps)
),
1,
)
val_freq = max(f if isinstance(f := self.val_freq, int) else round(f * self.steps), 1)
with tqdm(total=self.steps, desc="Training", colour=self._PBAR_COL) as pbar:
for step in range(1, self.steps + 1):
logging_dict = self.training_step(
Expand Down
33 changes: 19 additions & 14 deletions src/algs/adv/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,8 @@
]


DY = TypeVar("DY", bound=Optional[Dataset])
DS = TypeVar("DS", bound=Optional[Dataset])
DY = TypeVar("DY", bound=Optional[Dataset[Tensor]])
DS = TypeVar("DS", bound=Optional[Dataset[Tensor]])


class EvalTrainData(Enum):
Expand All @@ -58,10 +58,15 @@ class InvariantDatasets(Generic[DY, DS]):


def log_sample_images(
*, data: CdtVisionDataset, dm: DataModule, name: str, step: int, num_samples: int = 64
*,
data: CdtVisionDataset[TernarySample[Tensor], Tensor, Tensor],
dm: DataModule,
name: str,
step: int,
num_samples: int = 64,
) -> None:
inds = torch.randperm(len(data))[:num_samples]
images = data[inds.tolist()]
inds: list[int] = torch.randperm(len(data))[:num_samples].tolist()
images = data[inds]
log_images(images=images, dm=dm, name=f"Samples from {name}", prefix="eval", step=step)


Expand All @@ -73,39 +78,39 @@ def log_sample_images(

@overload
def encode_dataset(
dl: CdtDataLoader[TernarySample],
dl: CdtDataLoader[TernarySample[Tensor]],
*,
encoder: SplitLatentAe,
device: Union[str, torch.device],
invariant_to: Literal["y"] = ...,
) -> InvariantDatasets[Dataset, None]:
) -> InvariantDatasets[Dataset[Tensor], None]:
...


@overload
def encode_dataset(
dl: CdtDataLoader[TernarySample],
dl: CdtDataLoader[TernarySample[Tensor]],
*,
encoder: SplitLatentAe,
device: Union[str, torch.device],
invariant_to: Literal["s"] = ...,
) -> InvariantDatasets[None, Dataset]:
) -> InvariantDatasets[None, Dataset[Tensor]]:
...


@overload
def encode_dataset(
dl: CdtDataLoader[TernarySample],
dl: CdtDataLoader[TernarySample[Tensor]],
*,
encoder: SplitLatentAe,
device: Union[str, torch.device],
invariant_to: Literal["both"],
) -> InvariantDatasets[Dataset, Dataset]:
) -> InvariantDatasets[Dataset[Tensor], Dataset[Tensor]]:
...


def encode_dataset(
dl: CdtDataLoader[TernarySample],
dl: CdtDataLoader[TernarySample[Tensor]],
*,
encoder: SplitLatentAe,
device: Union[str, torch.device],
Expand Down Expand Up @@ -145,7 +150,7 @@ def encode_dataset(
return InvariantDatasets(inv_y=inv_y, inv_s=inv_s)


def _log_enc_statistics(encoded: Dataset, *, step: Optional[int], s_count: int) -> None:
def _log_enc_statistics(encoded: Dataset[Tensor], *, step: Optional[int], s_count: int) -> None:
"""Compute and log statistics about the encoding."""
x, y, s = encoded.x, encoded.y, encoded.s
class_ids = labels_to_group_id(s=s, y=y, s_count=s_count)
Expand All @@ -154,7 +159,7 @@ def _log_enc_statistics(encoded: Dataset, *, step: Optional[int], s_count: int)
mapper = umap.UMAP(n_neighbors=25, n_components=2) # type: ignore
umap_z = mapper.fit_transform(x.numpy())
umap_plot = visualize_clusters(umap_z, labels=class_ids, s_count=s_count)
to_log = {"umap": wandb.Image(umap_plot)}
to_log: dict[str, Union[wandb.Image, float]] = {"umap": wandb.Image(umap_plot)}
logger.info("Done.")

for y_value in y.unique():
Expand Down
7 changes: 4 additions & 3 deletions src/data/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,10 @@
from dataclasses import dataclass
from pathlib import Path
import platform
from typing import Any, Final, Generic, TypeVar, Union
from typing import Final, Generic, TypeVar, Union
from typing_extensions import TypeAlias

from conduit.data import LoadedData, TernarySample
from conduit.data import LoadedData, TernarySample, UnloadedData
from conduit.data.datasets import CdtDataset
from conduit.data.datasets.vision import CdtVisionDataset
from hydra.utils import to_absolute_path
Expand Down Expand Up @@ -44,7 +44,8 @@ def process_data_dir(root: Union[Path, str, None]) -> Path:
return Path(to_absolute_path(str(root))).resolve()


Dataset: TypeAlias = CdtDataset[TernarySample[LoadedData], Any, Tensor, Tensor]
X = TypeVar("X", bound=UnloadedData)
Dataset: TypeAlias = CdtDataset[TernarySample[LoadedData], X, Tensor, Tensor]
D = TypeVar("D", bound=Dataset)


Expand Down