Skip to content

vsmolyakov/deep

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

deep

deep learning

Description

Keras

  • image_search: VGG-16 applied to Caltech101 dataset for nearest neighbor image retrieval
  • keras_lenet: LeNet architecture for MNIST digit recognition
  • keras_vae: Variational Auto-Encoder (VAE) trained on MNIST digits
  • keras_dcgan: Deep Convolutional GAN (DC-GAN) trained on CIFAR10 dataset
  • sentiment_kernel: LSTM neural network for sentence sentiment prediction
  • lstm_language: LSTM language model for generating text trained on Shakespeare
  • lstm_series: LSTM time series prediction applied to S&P500 data
  • pretrained: pretrained VGG16, VGG19, ResNet50, InceptionV3 for image classification
  • transfer_learning: ResNet50 fine tuned on Caltech101 dataset
  • keras_seq2seq: seq2seq model for machine translation with bidirectional RNN encoder
  • grad_cam: class activation map computed by weighing each channel by its average gradient
  • style_transfer: neural style transfer with VGG19 by minimizing content and style loss with L-BFGS
  • keras_mdn: Mixture Density Network (MDN) for learning parameters of a Gaussian Mixture Model
  • keras_transformer: Transformer for text classification

References:
https://keras.io/

PyTorch

  • lenet5_cifar10: LeNet5 CNN architecture for CIFAR10 object classification
  • dan_sentiment: sentiment classifier based on averaging of pretrained word embeddings
  • lstm_qsim: LSTM encoder for question similarity trained on stack exchange dataset
  • gradients: computes gradient and weight norms for a simple MLP architecture with different optimizers
  • normalizing_flows: a sequence of invertible density transformations for posterior approximation
  • fine_tuning_BERT: fine tuning BERT for text regression task
  • distilbert_imdb: fine tuning DistilBERT for IMDB sentiment classification using HuggingFace transformers
  • zeroshot_vit: zero-shot image classification using HuggingFace transformers
  • llama2_chat_langchain: integrating llama 2 chat with HuggingFace and LangChain
  • peft_finetuning_llm: PEFT finetuning of FLAN-T5 model using LoRA adapters
  • rag_openai_langchain: Retrieval Augmented Generation (RAG) using ChatOpenAI LLM and FAISS vectorstore

References: http://pytorch.org/

TensorFlow

  • tf_classifier: DNN classifier for Iris dataset
  • tf_regressor: DNN regressor for estimating Boston housing prices
  • tf_mlp: Multi-Layer Perceptron with callbacks
  • tf_cnn_mnist: CNN for MNIST digit classification
  • tf_autoencoder: a two-layer encoder / decoder architecture applied to MNIST digits
  • tf_word2vec: word2vec skip-gram model trained on the 20 newsgroups dataset
  • tf_wide_and_deep: wide and deep classification architecture trained on census income dataset
  • tf_gan_mlp: generative adversarial network based on two MLPs using MNIST digits
  • tf_inception_v3: InceptionV3 architecture pre-trained on ILSVRC-2012-CLS image classification dataset
  • tf_optimizers: a comparison of SGD, Momentum, RMSProp and Adam optimizers using a CNN trained on MNIST digits

References:
https://www.tensorflow.org/

Theano

References: http://deeplearning.net/software/theano/

Dependencies

Python 2.7