This project, developed for HEINEKEN Vietnam, aims to automate the analysis of promotional materials in images. The tool can detect brand logos (Heineken, Tiger, Bia Viet, Larue, Bivina, Edelweiss, Strongbow), beer products, consumers, and various promotional items (posters, banners, LED signs). By doing so, it helps reduce time and costs for HEINEKEN Vietnam while ensuring effective brand presence in locations like restaurants, bars, and stores.
- Backend: Node.js, Express
- Frontend: Next.js, React
- AI Service: Python, PyTorch
root/
│
├── backend/
│ ├── src/
│ │ ├── controllers/
│ │ ├── models/
│ │ ├── routes/
│ │ └── app.js
│ ├── uploads/
│ ├── package.json
│ ├── .gitignore
│ └── .env
│
├── frontend/
│ ├── src/
│ │ ├── app/
│ │ ├── components/
│ │ ├── libs/
│ │ └── utils/
│ ├── public/
│ ├── package.json
│ ├── .gitignore
│ └── .env
│
├── main.py
├── run.py
├── requirements.txt
└── README.md
- Node.js and npm (yarn)
- Python 3 and pip
-
Clone the repository:
git clone https://github.com/LacTQuan/hackhcm-Rambutan.git cd hackhcm-Rambutan
-
Set up the backend:
cd backend yarn cp .env.example .env # Fill in your environment variables in the .env file
-
Set up the frontend:
cd ../frontend yarn cp .env.example .env
-
Set up the AI service:
pip install -r requirements.txt
To start the backend server:
cd backend
yarn start
To start the frontend server:
cd frontend
yarn start
To start the Python service:
python main.py