Skip to content

uoguelph-mlrg/EaCP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adapting Prediction Sets to Distribution Shifts Without Labels

This is the code repository for our paper Adapting Prediction Sets to Distribution Shifts Without Labels. EACP improves the accuracy of prediction sets under distribution shift by adaptively increasing set-sizes under greater uncertainty and simultaneously updating the base model.

Getting started

For computational efficiency, we assume that the inference results on calibration datasets (for example, the ImageNet validation set) have been executed and saved to disk. One way this can be done is as follows:

def save_results(save_path: str, model torch.nn.Module, data_loader: torch.utils.data.DataLoader, device: torch.device, file_name: str, n_classes: int):
    """
    Save softmax results and corresponding labels for a given dataset and model.

    save_path: Directory for saving results.
    model: Pre-trained model of interest, e.g. torchvision.models.resnet50
    data_loader: Pytorch dataloader with the desired dataset, e.g. ImageNet Val set.
    device: gpu or cpu device.
    file_name: Name of save file.
    n_classes: Number of classes in this dataset. 
    """
    scores = np.ones((len(data_loader.dataset), n_classes))
    labels = np.ones((len(data_loader.dataset),))
    counter = 0
    # do inference
    with torch.no_grad():
        for batch in tqdm(data_loader):
            scores[counter:counter + batch[0].shape[0], :] = model(batch[0].to(device)).softmax(dim=1).cpu().numpy()
            labels[counter:counter + batch[1].shape[0]] = batch[1].numpy().astype(int)
            counter += batch[0].shape[0]

    print("saving the scores and labels")
    os.makedirs(save_path, exist_ok=True)
    np.savez(save_path + file_name + '.npz', smx=scores, labels=labels)

    acc = (np.argmax(scores, axis=1) == labels).mean() * 100
    print('Validation accuracy: {} %'.format(acc))

Run main.py to run adaptation techniques on a desired dataset.

Example: Replicating results on ImageNet-v2.

python main.py --dataset imagenet-v2 --model resnet50 --save-name resnet50_results --lr 0.00025 --cal-path /scratch/ssd004/scratch/kkasa/inference_results/IN1k/imagenet-resnet50.npz --scaling-factor 2 --alpha 0.1 --updates none tta ecp eacp

Acknowledgment

This repository borrows from the EATA, Tent, and conformal training repos.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages