Anonymization library for python. AnonyPy provides following privacy preserving techniques for the anonymization.
- K Anonymity
- L Diversity
- T Closeness
- Anonymization method aims at making the individual record be indistinguishable among a group record by using techniques of generalization and suppression.
- Turning a dataset into a k-anonymous (and possibly l-diverse or t-close) dataset is a complex problem, and finding the optimal partition into k-anonymous groups is an NP-hard problem.
- AnonyPy uses "Mondrian" algorithm to partition the original data into smaller and smaller groups
- The algorithm assumes that we have converted all attributes into numerical or categorical values and that we are able to measure the “span” of a given attribute Xi.
$ pip install anonypy
import anonypy
import pandas as pd
data = [
[6, "1", "test1", "x", 20],
[6, "1", "test1", "x", 30],
[8, "2", "test2", "x", 50],
[8, "2", "test3", "w", 45],
[8, "1", "test2", "y", 35],
[4, "2", "test3", "y", 20],
[4, "1", "test3", "y", 20],
[2, "1", "test3", "z", 22],
[2, "2", "test3", "y", 32],
]
columns = ["col1", "col2", "col3", "col4", "col5"]
categorical = set(("col2", "col3", "col4"))
def main():
df = pd.DataFrame(data=data, columns=columns)
for name in categorical:
df[name] = df[name].astype("category")
feature_columns = ["col1", "col2", "col3"]
sensitive_column = "col4"
p = anonypy.Preserver(df, feature_columns, sensitive_column)
rows = p.anonymize_k_anonymity(k=2)
dfn = pd.DataFrame(rows)
print(dfn)
Original data
col1 col2 col3 col4 col5
0 6 1 test1 x 20
1 6 1 test1 x 30
2 8 2 test2 x 50
3 8 2 test3 w 45
4 8 1 test2 y 35
5 4 2 test3 y 20
6 4 1 test3 y 20
7 2 1 test3 z 22
8 2 2 test3 y 32
The created anonymized data is below(Guarantee 2-anonymity).
col1 col2 col3 col4 count
0 2-4 2 test3 y 2
1 2-4 1 test3 y 1
2 2-4 1 test3 z 1
3 6-8 1 test1,test2 x 2
4 6-8 1 test1,test2 y 1
5 8 2 test3,test2 w 1
6 8 2 test3,test2 x 1