Skip to content
/ ML Public

深度学习练习本

Notifications You must be signed in to change notification settings

twinsant/ML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

蚂蚁的AI学习练习

从概念到原理,再到应用,再到实践中知道价值 1 万美金的线画在哪里,最后到找到能画出线的人,时间消耗从 100 小时到 1000 小时再到 10000 小时,乃至一生。。。

flowchart LR
    A[开始] --> B[Know What]
    B --> C[Know How]
    B --> D[Know Why]
    C --> E[Know Where]
    D --> E
    D --> F[Know When]
    C --> F
    E --> G[Know Who]
    F --> G
Loading

个人5 年内目标

精通空间智能,比如NeRF, 3DGS等空间计算和空间视频的处理与生成,为元宇宙即下一阶段的 AI 应用打下基础,越过目前一维、二维和三维数据的匮乏,预先抢位智能时代。

空间智能是AI的下一阶段,是继LLMs大语言模型之后的第二个台阶,是通往AGI的必经之路。

Initially we will focus on generating 3D worlds without limits - creating and editing virtual spaces complete with physics, semantics, and control. We hope this will unlock new capabilities for creative users and professionals such as artists, designers, developers, and engineers. It will also allow anyone to imagine and create their own worlds, expanding the potential of generative AI from 2D images and videos to 3D worlds.

推荐信息源:资料日日新

推荐书目:

  • LLMs工具
  • AIGC工具

论文阅读

编程

Python

需要了解基本的Python语法,了解Numpy、Pandas、Matplotlib、PyTorch和TensorFlow等库的基本用法

数学

线性代数

概率论

机器学习理论

深度学习入门

Transformer

Diffusion

工具

练习环境

  • 本机
  • Google Colab
  • AutoDL

数据集

扩展阅读

About

深度学习练习本

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published