Skip to content
/ whisply Public

๐Ÿ’ฌ Transcribe, translate, diarize, annotate and subtitle video (and audio) with Whisper on Win, Linux and Mac ... Fast!!

License

Notifications You must be signed in to change notification settings

tsmdt/whisply

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

whisply

PyPI version

Transcribe, translate, annotate and subtitle audio and video files with OpenAI's Whisper ... fast!

whisply combines faster-whisper and insanely-fast-whisper to offer an easy-to-use solution for batch processing files on Windows, Linux and Mac. It also enables word-level speaker annotation by integrating whisperX and pyannote.

Table of contents

Features

  • ๐Ÿšดโ€โ™‚๏ธ Performance: whisply selects the fastest Whisper implementation based on your hardware:

    • CPU/GPU (Nvidia CUDA): fast-whisper or whisperX
    • MPS (Apple M1-M4): insanely-fast-whisper
  • โฉ large-v3-turbo Ready: Support for whisper-large-v3-turbo on all devices. Note: Subtitling and annotations on CPU/GPU use whisperX for accurate timestamps, but whisper-large-v3-turbo isnโ€™t currently available for whisperX.

  • โœ… Auto Device Selection: whisply automatically chooses faster-whisper (CPU) or insanely-fast-whisper (MPS, Nvidia GPUs) for transcription and translation unless a specific --device option is passed.

  • ๐Ÿ—ฃ๏ธ Word-level Annotations: Enabling --subtitle or --annotate uses whisperX or insanely-fast-whisper for word segmentation and speaker annotations. whisply approximates missing timestamps for numeric words.

  • ๐Ÿ’ฌ Customizable Subtitles: Specify words per subtitle block (e.g., "5") to generate .srt and .webvtt files with fixed word counts and timestamps.

  • ๐Ÿงบ Batch Processing: Handle single files, folders, URLs, or lists via .list documents. See the Batch processing section for details.

  • ๐Ÿ‘ฉโ€๐Ÿ’ป CLI / App: whisply can be run directly from CLI or as an app with a graphical user-interface (GUI).

  • โš™๏ธ Export Formats: Supports .json, .txt, .txt (annotated), .srt, .webvtt, .vtt, and .rttm.

Requirements

  • FFmpeg
  • >= Python3.10
  • GPU processing requires:
    • Nvidia GPU (CUDA: cuBLAS and cuDNN 8 for CUDA 12)
    • Apple Metal Performance Shaders (MPS) (Mac M1-M4)
  • Speaker annotation requires a HuggingFace Access Token
GPU Fix for Could not load library libcudnn_ops_infer.so.8. (click to expand)
If you use whisply on a Linux system with a Nivida GPU and get this error:

"Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory"

Run the following line in your CLI:

export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`

Add this line to your Python environment to make it permanent:

echo "export LD_LIBRARY_PATH=\`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + \":\" + os.path.dirname(nvidia.cudnn.lib.__file__))'\`" >> path/to/your/python/env

For more information please refer to the faster-whisper GitHub page.

Installation

1. Install ffmpeg

--- macOS ---
brew install ffmpeg

--- Linux ---
sudo apt-get update
sudo apt-get install ffmpeg

--- Windows ----
https://ffmpeg.org/download.html

2. Clone this repository and change to project folder

git clone https://github.com/tsmdt/whisply.git
cd whisply

3. Create a Python virtual environment

python3 -m venv venv

4. Activate the Python virtual environment

source venv/bin/activate

5. Install whisply with pip

pip install .

or

pip install whisply

Usage

CLI

$ whisply

 Usage: whisply [OPTIONS]

 WHISPLY ๐Ÿ’ฌ Transcribe, translate, annotate and subtitle audio and video files with OpenAI's Whisper ... fast!

โ•ญโ”€ Options โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ --files               -f         TEXT                                Path to file, folder, URL or .list to process. [default: None]                                                                โ”‚
โ”‚ --output_dir          -o         DIRECTORY                           Folder where transcripts should be saved. [default: transcriptions]                                                           โ”‚
โ”‚ --device              -d         [auto|cpu|gpu|mps]                  Select the computation device: CPU, GPU (NVIDIA), or MPS (Mac M1-M4). [default: auto]                                         โ”‚
โ”‚ --model               -m         TEXT                                Whisper model to use (List models via --list_models). [default: large-v3-turbo]                                               โ”‚
โ”‚ --lang                -l         TEXT                                Language of provided file(s) ("en", "de") (Default: auto-detection). [default: None]                                          โ”‚
โ”‚ --annotate            -a                                             Enable speaker annotation (Saves .rttm | Default: False).                                                                     โ”‚
โ”‚ --num_speakers        -num       INTEGER                             Number of speakers to annotate (Default: auto-detection). [default: None]                                                     โ”‚
โ”‚ --hf_token            -hf        TEXT                                HuggingFace Access token required for speaker annotation. [default: None]                                                     โ”‚
โ”‚ --subtitle            -s                                             Create subtitles (Saves .srt, .vtt and .webvtt | Default: False).                                                             โ”‚
โ”‚ --sub_length                     INTEGER                             Subtitle segment length in words. [default: 5]                                                                                โ”‚
โ”‚ --translate           -t                                             Translate transcription to English (Default: False).                                                                          โ”‚
โ”‚ --export              -e         [all|json|txt|rttm|vtt|webvtt|srt]  Choose the export format. [default: all]                                                                                      โ”‚
โ”‚ --verbose             -v                                             Print text chunks during transcription (Default: False).                                                                      โ”‚
โ”‚ --del_originals       -del                                           Delete original input files after file conversion. (Default: False)                                                           โ”‚
โ”‚ --config                         PATH                                Path to configuration file. [default: None]                                                                                   โ”‚
โ”‚ --post_correction     -post      PATH                                Path to YAML file for post-correction. [default: None]                                                                        โ”‚
โ”‚ --launch_app          -app                                           Launch the web app instead of running standard CLI commands.                                                                  โ”‚
โ”‚ --list_models                                                        List available models.                                                                                                        โ”‚
โ”‚ --install-completion                                                 Install completion for the current shell.                                                                                     โ”‚
โ”‚ --show-completion                                                    Show completion for the current shell, to copy it or customize the installation.                                              โ”‚
โ”‚ --help                                                               Show this message and exit.                                                                                                   โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

App

Instead of running whisply from the CLI you can start the web app instead:

$ whisply --launch_app

or:

$ whisply -app

Open the local URL in your browser after starting the app (Note: The URL might differ from system to system):

* Running on local URL: http://127.0.0.1:7860

Speaker annotation and diarization

Requirements

In order to annotate speakers using --annotate you need to provide a valid HuggingFace access token using the --hf_token option. Additionally, you must accept the terms and conditions for both version 3.0 and version 3.1 of the pyannote segmentation model.

For detailed instructions, refer to the Requirements section on the pyannote model page on HuggingFace and make sure that you complete steps "2. Accept pyannote/segmentation-3.0 user conditions", "3. Accept pyannote/speaker-diarization-3.1 user conditions" and "4. Create access token at hf.co/settings/tokens".

How speaker annotation works

whisply uses whisperX for speaker diarization and annotation. Instead of returning chunk-level timestamps like the standard Whisper implementation whisperX is able to return word-level timestamps as well as annotating speakers word by word, thus returning much more precise annotations.

Out of the box whisperX will not provide timestamps for words containing only numbers (e.g. "1.5" or "2024"): whisply fixes those instances through timestamp approximation. Other known limitations of whisperX include:

  • inaccurate speaker diarization if multiple speakers talk at the same time
  • to provide word-level timestamps and annotations whisperX uses language specific alignment models; out of the box whisperX supports these languages: en, fr, de, es, it, ja, zh, nl, uk, pt.

Refer to the whisperX GitHub page for more information.

Post correction

The --post_correction option allows you to correct various transcription errors that you may find in your files. The option takes as argument a .yaml file with the following structure:

# Single word corrections
Gardamer: Gadamer

# Pattern-based corrections
patterns:
  - pattern: 'Klaus-(Cira|Cyra|Tira)-Stiftung'
    replacement: 'Klaus Tschira Stiftung'
  • Single word corrections: matches single words โ†’ wrong word: correct word
  • Pattern-based corrections: matches patterns โ†’ (Cira|Cyra|Tira) will look for Klaus-Cira-Stiftung, Klaus-Cyra-Stiftung and / or Klaus-Tira-Stiftung and replaces it with Klaus-Tschirra-Stiftung

Post correction will be applied to all export file formats you choose.

Batch processing

Instead of providing a file, folder or URL by using the --files option you can pass a .list with a mix of files, folders and URLs for processing.

Example:

$ cat my_files.list

video_01.mp4
video_02.mp4
./my_files/
https://youtu.be/KtOayYXEsN4?si=-0MS6KXbEWXA7dqo

Using config files for batch processing

You can provide a .json config file by using the --config option which makes batch processing easy. An example config looks like this:

{
    "files": "./files/my_files.list",          # Path to your files
    "output_dir": "./transcriptions",          # Output folder where transcriptions are saved
    "device": "auto",                          # AUTO, GPU, MPS or CPU
    "model": "large-v3-turbo",                 # Whisper model to use
    "lang": null,                              # Null for auto-detection or language codes ("en", "de", ...)
    "annotate": false,                         # Annotate speakers 
    "num_speakers": null,                      # Number of speakers of the input file (null: auto-detection)
    "hf_token": "HuggingFace Access Token",    # Your HuggingFace Access Token (needed for annotations)
    "subtitle": false,                         # Subtitle file(s)
    "sub_length": 10,                          # Length of each subtitle block in number of words
    "translate": false,                        # Translate to English
    "export": "txt",                           # Export .txts only
    "verbose": false                           # Print transcription segments while processing 
    "del_originals": false,                    # Delete original input files after file conversion
    "post_correction": "my_corrections.yaml"   # Apply post correction with specified patterns in .yaml
}

About

๐Ÿ’ฌ Transcribe, translate, diarize, annotate and subtitle video (and audio) with Whisper on Win, Linux and Mac ... Fast!!

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages