-
Notifications
You must be signed in to change notification settings - Fork 489
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* modern lstm * format * formatting * formatting * formatting * formatting * fix a typo * Update examples/modern-lstm/Cargo.toml Co-authored-by: Guillaume Lagrange <[email protected]> * use generic backend * remove Cargo.lock * use backend for inference * update readme * Update README + fix main changes * Fix clippy --------- Co-authored-by: Guillaume Lagrange <[email protected]>
- Loading branch information
1 parent
9f00320
commit e2fa935
Showing
10 changed files
with
926 additions
and
0 deletions.
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
[package] | ||
name = "modern-lstm" | ||
version = "0.1.0" | ||
edition = "2021" | ||
|
||
[features] | ||
ndarray = ["burn/ndarray"] | ||
ndarray-blas-accelerate = ["burn/ndarray", "burn/accelerate"] | ||
ndarray-blas-netlib = ["burn/ndarray", "burn/blas-netlib"] | ||
ndarray-blas-openblas = ["burn/ndarray", "burn/openblas"] | ||
tch-cpu = ["burn/tch"] | ||
tch-gpu = ["burn/tch"] | ||
wgpu = ["burn/wgpu"] | ||
cuda = ["burn/cuda"] | ||
|
||
[dependencies] | ||
burn = { path = "../../crates/burn", features=["train"] } | ||
|
||
# Random number generator | ||
rand = { workspace = true } | ||
rand_distr = { workspace = true } | ||
|
||
# Serialization | ||
serde = {workspace = true, features = ["std", "derive"]} | ||
|
||
# Organise the results in dataframe | ||
polars = { workspace = true } |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
# Advanced LSTM Implementation with Burn | ||
|
||
A more advanced implementation of Long Short-Term Memory (LSTM) networks in Burn with combined | ||
weight matrices for the input and hidden states, based on the | ||
[PyTorch implementation](https://github.com/shiv08/Advanced-LSTM-Implementation-with-PyTorch). | ||
|
||
`LstmNetwork` is the top-level module with bidirectional and regularization support. The LSTM | ||
variants differ by `bidirectional` and `num_layers` settings: | ||
|
||
- LSTM: `num_layers = 1` and `bidirectional = false` | ||
- Stacked LSTM: `num_layers > 1` and `bidirectional = false` | ||
- Bidirectional LSTM: `num_layers = 1` and `bidirectional = true` | ||
- Bidirectional Stacked LSTM: `num_layers > 1` and `bidirectional = true` | ||
|
||
This implementation is complementary to Burn's official LSTM, users can choose either one depends on | ||
the project's specific needs. | ||
|
||
## Usage | ||
|
||
## Training | ||
|
||
```sh | ||
# Cuda backend | ||
cargo run --example lstm-train --release --features cuda-jit | ||
|
||
# Wgpu backend | ||
cargo run --example lstm-train --release --features wgpu | ||
|
||
# Tch GPU backend | ||
export TORCH_CUDA_VERSION=cu121 # Set the cuda version | ||
cargo run --example lstm-train --release --features tch-gpu | ||
|
||
# Tch CPU backend | ||
cargo run --example lstm-train --release --features tch-cpu | ||
|
||
# NdArray backend (CPU) | ||
cargo run --example lstm-train --release --features ndarray | ||
cargo run --example lstm-train --release --features ndarray-blas-openblas | ||
cargo run --example lstm-train --release --features ndarray-blas-netlib | ||
``` | ||
|
||
### Inference | ||
|
||
```sh | ||
cargo run --example lstm-infer --release --features cuda-jit | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
use burn::tensor::backend::Backend; | ||
|
||
pub fn launch<B: Backend>(device: B::Device) { | ||
modern_lstm::inference::infer::<B>("/tmp/modern-lstm", device); | ||
} | ||
|
||
#[cfg(any( | ||
feature = "ndarray", | ||
feature = "ndarray-blas-netlib", | ||
feature = "ndarray-blas-openblas", | ||
feature = "ndarray-blas-accelerate", | ||
))] | ||
mod ndarray { | ||
use burn::backend::ndarray::{NdArray, NdArrayDevice}; | ||
|
||
use crate::launch; | ||
|
||
pub fn run() { | ||
launch::<NdArray>(NdArrayDevice::Cpu); | ||
} | ||
} | ||
|
||
#[cfg(feature = "tch-gpu")] | ||
mod tch_gpu { | ||
use burn::backend::libtorch::{LibTorch, LibTorchDevice}; | ||
|
||
use crate::launch; | ||
|
||
pub fn run() { | ||
#[cfg(not(target_os = "macos"))] | ||
let device = LibTorchDevice::Cuda(0); | ||
#[cfg(target_os = "macos")] | ||
let device = LibTorchDevice::Mps; | ||
|
||
launch::<LibTorch>(device); | ||
} | ||
} | ||
|
||
#[cfg(feature = "tch-cpu")] | ||
mod tch_cpu { | ||
use burn::backend::libtorch::{LibTorch, LibTorchDevice}; | ||
|
||
use crate::launch; | ||
|
||
pub fn run() { | ||
launch::<LibTorch>(LibTorchDevice::Cpu); | ||
} | ||
} | ||
|
||
#[cfg(feature = "wgpu")] | ||
mod wgpu { | ||
use crate::launch; | ||
use burn::backend::wgpu::Wgpu; | ||
|
||
pub fn run() { | ||
launch::<Wgpu>(Default::default()); | ||
} | ||
} | ||
|
||
#[cfg(feature = "cuda")] | ||
mod cuda { | ||
use crate::launch; | ||
use burn::backend::Cuda; | ||
|
||
pub fn run() { | ||
launch::<Cuda>(Default::default()); | ||
} | ||
} | ||
|
||
fn main() { | ||
#[cfg(any( | ||
feature = "ndarray", | ||
feature = "ndarray-blas-netlib", | ||
feature = "ndarray-blas-openblas", | ||
feature = "ndarray-blas-accelerate", | ||
))] | ||
ndarray::run(); | ||
#[cfg(feature = "tch-gpu")] | ||
tch_gpu::run(); | ||
#[cfg(feature = "tch-cpu")] | ||
tch_cpu::run(); | ||
#[cfg(feature = "wgpu")] | ||
wgpu::run(); | ||
#[cfg(feature = "cuda")] | ||
cuda::run(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
use burn::{ | ||
grad_clipping::GradientClippingConfig, optim::AdamConfig, tensor::backend::AutodiffBackend, | ||
}; | ||
use modern_lstm::{model::LstmNetworkConfig, training::TrainingConfig}; | ||
|
||
pub fn launch<B: AutodiffBackend>(device: B::Device) { | ||
let config = TrainingConfig::new( | ||
LstmNetworkConfig::new(), | ||
// Gradient clipping via optimizer config | ||
AdamConfig::new().with_grad_clipping(Some(GradientClippingConfig::Norm(1.0))), | ||
); | ||
|
||
modern_lstm::training::train::<B>("/tmp/modern-lstm", config, device); | ||
} | ||
|
||
#[cfg(any( | ||
feature = "ndarray", | ||
feature = "ndarray-blas-netlib", | ||
feature = "ndarray-blas-openblas", | ||
feature = "ndarray-blas-accelerate", | ||
))] | ||
mod ndarray { | ||
use burn::backend::{ | ||
ndarray::{NdArray, NdArrayDevice}, | ||
Autodiff, | ||
}; | ||
|
||
use crate::launch; | ||
|
||
pub fn run() { | ||
launch::<Autodiff<NdArray>>(NdArrayDevice::Cpu); | ||
} | ||
} | ||
|
||
#[cfg(feature = "tch-gpu")] | ||
mod tch_gpu { | ||
use burn::backend::{ | ||
libtorch::{LibTorch, LibTorchDevice}, | ||
Autodiff, | ||
}; | ||
|
||
use crate::launch; | ||
|
||
pub fn run() { | ||
#[cfg(not(target_os = "macos"))] | ||
let device = LibTorchDevice::Cuda(0); | ||
#[cfg(target_os = "macos")] | ||
let device = LibTorchDevice::Mps; | ||
|
||
launch::<Autodiff<LibTorch>>(device); | ||
} | ||
} | ||
|
||
#[cfg(feature = "tch-cpu")] | ||
mod tch_cpu { | ||
use burn::backend::{ | ||
libtorch::{LibTorch, LibTorchDevice}, | ||
Autodiff, | ||
}; | ||
|
||
use crate::launch; | ||
|
||
pub fn run() { | ||
launch::<Autodiff<LibTorch>>(LibTorchDevice::Cpu); | ||
} | ||
} | ||
|
||
#[cfg(feature = "wgpu")] | ||
mod wgpu { | ||
use crate::launch; | ||
use burn::backend::{wgpu::Wgpu, Autodiff}; | ||
|
||
pub fn run() { | ||
launch::<Autodiff<Wgpu>>(Default::default()); | ||
} | ||
} | ||
|
||
#[cfg(feature = "cuda")] | ||
mod cuda { | ||
use crate::launch; | ||
use burn::backend::{cuda::CudaDevice, Autodiff, Cuda}; | ||
|
||
pub fn run() { | ||
launch::<Autodiff<Cuda>>(CudaDevice::default()); | ||
} | ||
} | ||
|
||
fn main() { | ||
#[cfg(any( | ||
feature = "ndarray", | ||
feature = "ndarray-blas-netlib", | ||
feature = "ndarray-blas-openblas", | ||
feature = "ndarray-blas-accelerate", | ||
))] | ||
ndarray::run(); | ||
#[cfg(feature = "tch-gpu")] | ||
tch_gpu::run(); | ||
#[cfg(feature = "tch-cpu")] | ||
tch_cpu::run(); | ||
#[cfg(feature = "wgpu")] | ||
wgpu::run(); | ||
#[cfg(feature = "cuda")] | ||
cuda::run(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
use burn::{ | ||
data::{ | ||
dataloader::batcher::Batcher, | ||
dataset::{Dataset, InMemDataset}, | ||
}, | ||
prelude::*, | ||
}; | ||
use rand::Rng; | ||
use rand_distr::{Distribution, Normal}; | ||
use serde::{Deserialize, Serialize}; | ||
|
||
// Dataset parameters | ||
pub const NUM_SEQUENCES: usize = 1000; | ||
pub const SEQ_LENGTH: usize = 10; | ||
pub const NOISE_LEVEL: f32 = 0.1; | ||
pub const RANDOM_SEED: u64 = 5; | ||
|
||
// Generate a sequence where each number is the sum of previous two numbers plus noise | ||
#[derive(Clone, Debug, Serialize, Deserialize)] | ||
pub struct SequenceDatasetItem { | ||
pub sequence: Vec<f32>, | ||
pub target: f32, | ||
} | ||
|
||
impl SequenceDatasetItem { | ||
pub fn new(seq_length: usize, noise_level: f32) -> Self { | ||
// Start with two random numbers between 0 and 1 | ||
let mut seq = vec![rand::thread_rng().gen(), rand::thread_rng().gen()]; | ||
|
||
// Generate sequence | ||
for _i in 0..seq_length { | ||
// Next number is sum of previous two plus noise | ||
let normal = Normal::new(0.0, noise_level).unwrap(); | ||
let next_val = | ||
seq[seq.len() - 2] + seq[seq.len() - 1] + normal.sample(&mut rand::thread_rng()); | ||
seq.push(next_val); | ||
} | ||
|
||
Self { | ||
// Convert to sequence and target | ||
sequence: seq[0..seq.len() - 1].to_vec(), // All but last | ||
target: seq[seq.len() - 1], // Last value | ||
} | ||
} | ||
} | ||
|
||
// Custom Dataset for Sequence Data | ||
pub struct SequenceDataset { | ||
dataset: InMemDataset<SequenceDatasetItem>, | ||
} | ||
|
||
impl SequenceDataset { | ||
pub fn new(num_sequences: usize, seq_length: usize, noise_level: f32) -> Self { | ||
let mut items = vec![]; | ||
for _i in 0..num_sequences { | ||
items.push(SequenceDatasetItem::new(seq_length, noise_level)); | ||
} | ||
let dataset = InMemDataset::new(items); | ||
|
||
Self { dataset } | ||
} | ||
} | ||
|
||
impl Dataset<SequenceDatasetItem> for SequenceDataset { | ||
fn get(&self, index: usize) -> Option<SequenceDatasetItem> { | ||
self.dataset.get(index) | ||
} | ||
|
||
fn len(&self) -> usize { | ||
self.dataset.len() | ||
} | ||
} | ||
|
||
#[derive(Clone, Debug)] | ||
pub struct SequenceBatcher<B: Backend> { | ||
device: B::Device, | ||
} | ||
|
||
#[derive(Clone, Debug)] | ||
pub struct SequenceBatch<B: Backend> { | ||
pub sequences: Tensor<B, 3>, // [batch_size, seq_length, input_size] | ||
pub targets: Tensor<B, 2>, // [batch_size, 1] | ||
} | ||
|
||
impl<B: Backend> SequenceBatcher<B> { | ||
pub fn new(device: B::Device) -> Self { | ||
Self { device } | ||
} | ||
} | ||
|
||
impl<B: Backend> Batcher<SequenceDatasetItem, SequenceBatch<B>> for SequenceBatcher<B> { | ||
fn batch(&self, items: Vec<SequenceDatasetItem>) -> SequenceBatch<B> { | ||
let mut sequences: Vec<Tensor<B, 2>> = Vec::new(); | ||
|
||
for item in items.iter() { | ||
let seq_tensor = Tensor::<B, 1>::from_floats(item.sequence.as_slice(), &self.device); | ||
// Add feature dimension, the input_size is 1 implicitly. We can change the input_size here with some operations | ||
sequences.push(seq_tensor.unsqueeze_dims(&[-1])); | ||
} | ||
let sequences = Tensor::stack(sequences, 0); | ||
|
||
let targets = items | ||
.iter() | ||
.map(|item| Tensor::<B, 1>::from_floats([item.target], &self.device)) | ||
.collect(); | ||
let targets = Tensor::stack(targets, 0); | ||
|
||
SequenceBatch { sequences, targets } | ||
} | ||
} |
Oops, something went wrong.