Skip to content

thomasjungblut/tjungblut-online-ml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

66 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tjungblut-online-ml

This is my online machine learning library. Over the next few months I will put some algorithms from my main common library into a streaming fashion and move them into this repository.

Everything will be built upon the Java 8 streams and the algorithms are specifically designed to make use of the streams feature, also I aim scale this library vertically by using parallel streams wherever possible.

This is not a distributed system, but its parts can be reused with any MapReduce or BSP implementation (e.g. Hadoop MR/Hama BSP), making it horizontally scalable for terabyte/petabyte datasets as well.

For the future, I also want to support infinite streams where the training can be done asynchronously with using the model.

Supported Algorithms

  • Multinomial Naive Bayes
  • Stochastic Gradient Descent
  • Logistic regression
  • Linear regression (least squares)
  • Multinomial regression (one vs. all)
  • Maximum Margin (hinge loss)
  • Lasso (l1 norm)
  • Ridge Regression (l2 norm)
  • FTRL-Proximal
  • Adam
  • CG
  • Sample-based Adaptive Learning Rates
  • Shuffled input streams
  • Multilayer Perceptron
  • Graphite Bindings

Sample Usage

Stochastic Gradient Descent (logistic regression)

A very simplistic example is the SGD (stochastic gradient descent) classifier, the following example will train a logistic regression model:

// use a gradient descent with a learning rate of 0.1
StochasticGradientDescent min = StochasticGradientDescentBuilder.create(0.1).build();

// generate the data, note that the features must include a bias (constant 1) if you want to have one
List<FeatureOutcomePair> data = generateData();

RegressionLearner learner = new RegressionLearner(min, new SigmoidActivationFunction(), new LogLoss());
// do 5 passes over all data in a stream, the default is 1
learner.setNumPasses(5);

// train the model by supplying the stream
RegressionModel model = learner.train(() -> data.stream());

// print the weights
System.out.println(model.getWeights());

The StochasticGradientDescent class makes use of parallel streams, so if you want to change the size of the internal fork-join pool that it uses, you can set:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=30

to whatever maximizes your throughput in updates per second.

Do Predictions

You can also do predictions with the model using a Classifier:

RegressionClassifier classifier = new RegressionClassifier(model);
// add the bias to the feature and predict it
DoubleVector prediction = classifier.predict(new DenseDoubleVector(new double[] { 1, 25d, 25d }))
// print the prediction
System.out.println(prediction);

Serialize your model

If you want to save the model to a file, you can use the serialization API offered by the model:

try (DataOutputStream dos = new DataOutputStream(new FileOutputStream("/tmp/model.bin"))){
	model.serialize(dos);
}

Deserialization works in the same way:

RegressionModel model = new RegressionModel();
try (DataInputStream dis = new DataInputStream(new FileInputStream("/tmp/model.bin"))){
	model.deserialize(dis);
}
// take dis

Avazu Click-Through Rate Prediction

A prime example to use this streaming library for is to do CTR predictions. Below code takes the data from the Avazu CTR prediction challenge on kaggle. It is using simple feature hashing and FTRL logistic regression.

public class AvazuCtrPrediction {

  private static final int NUM_COLUMNS = 24;
  private static final int SPARSE_HASH_DIMENSION = 2 << 24;
  private static final Pattern SPLITTER = Pattern.compile(",");
  private static final int BUFFER_SIZE = 1024 * 1024 * 5;
  private static final String TRAINING_SET_PATH = "/home/user/datasets/ctr/train.gz";

  private static final SingleEntryDoubleVector POSITIVE_CLASS //
  = new SingleEntryDoubleVector(1d);
  private static final SingleEntryDoubleVector NEGATIVE_CLASS //
  = new SingleEntryDoubleVector(0d);

  private static FeatureOutcomePair parseFeature(String line, String[] header) {

    final int shift = 2;
    String[] split = SPLITTER.split(line);
    Preconditions.checkArgument(split.length == NUM_COLUMNS,
        "line doesn't match expected size");

    // turn the date into the hour
    split[2] = split[2].substring(6);

    // prepare the tokens for feature hashing
    String[] tokens = new String[split.length - shift];
    for (int i = 0; i < tokens.length; i++) {
      tokens[i] = header[i + shift] + "_" + split[i + shift];
    }

    // hash them with 128 bit murmur3
    DoubleVector feature = VectorizerUtils.sparseHashVectorize(tokens, Hashing
        .murmur3_128(), () -> new SequentialSparseDoubleVector(
        SPARSE_HASH_DIMENSION));

    // fix the first element to be the bias
    feature.set(0, 1d);

    return new FeatureOutcomePair(feature,
        split[1].equals("0") ? NEGATIVE_CLASS : POSITIVE_CLASS);
  }

  private static Stream<FeatureOutcomePair> setupStream() {
    try {
      @SuppressWarnings("resource")
      BufferedReader reader = new BufferedReader(new InputStreamReader(
          new GZIPInputStream(new FileInputStream(TRAINING_SET_PATH),
              BUFFER_SIZE), Charset.defaultCharset()));

      // consume the header first
      final String[] header = SPLITTER.split(reader.readLine());
      // yield the stream for everything that comes after
      return reader.lines().map((s) -> parseFeature(s, header));
    } catch (IOException e) {
      throw new RuntimeException(e);
    }
  }

  public static void main(String[] args) throws IOException {

    StochasticGradientDescent sgd = StochasticGradientDescentBuilder
        .create(0.01) // learning rate
        .holdoutValidationPercentage(0.05d) // 5% as validation set
        .historySize(10_000) // keep 10k samples to compute relative improvement
        .weightUpdater(new AdaptiveFTRLRegularizer(1, 1, 1)) // FTRL updater
        .progressReportInterval(1_000_000) // report every n iterations
        .build();

    // simple regression with Sigmoid and LogLoss
    RegressionLearner learner = new RegressionLearner(sgd,
        new SigmoidActivationFunction(), new LogLoss());

    // you are able to trade speed with memory usage!
    // using sparse weights should use roughly 400mb, vs. 3gb of dense weights.
    // however, dense weights are 10x faster in this case.
    // learner.useSparseWeights();

    // do two full passes over the data
    learner.setNumPasses(2);
    learner.verbose();

    Stopwatch sw = Stopwatch.createStarted();

    // train the model
    RegressionModel model = learner.train(() -> setupStream());

    // output the weights
    model.getWeights().iterateNonZero().forEachRemaining(System.out::println);

    System.out.println("Time taken: " + sw.toString());

  }

}

You should see similar output to the one below (verbosity omitted):

Pass 0 | Iteration 1000000 | Validation Cost: 0.392678 | Training Cost: 0.414122 | Avg Improvement: -5.06327e-07 | Iterations/s: 83333.3
---
Pass 0 | Iteration 38000000 | Validation Cost: 0.400473 | Training Cost: 0.422624 | Avg Improvement: 1.80911e-08 | Iterations/s: 93596.1
Pass Summary 0 | Iteration 38406639 | Validation Cost: 0.400674 | Training Cost: 0.422823 | Iterations/s: 93446.8  | Total Time Taken: 6.854 min
Pass 1 | Iteration 1000000 | Validation Cost: 0.377576 | Training Cost: 0.403000 | Avg Improvement: -4.86178e-07 | Iterations/s: 93602.5
---
Pass 1 | Iteration 38000000 | Validation Cost: 0.396356 | Training Cost: 0.418665 | Avg Improvement: 2.13002e-08 | Iterations/s: 93981.1
Pass Summary 1 | Iteration 38406798 | Validation Cost: 0.396473 | Training Cost: 0.418885 | Iterations/s: 94018.9  | Total Time Taken: 13.63 min

0 -> -0.2179566321842441
19 -> -0.008019816916453593
40 -> 0.011372162311553732
72 -> 0.009959662995812498
75 -> 0.01552960872382698
91 -> 0.01122045025790969
114 -> -0.058862175500113786
---
33554352 -> -0.013848560325345247
33554353 -> -7.612543688230045E-4
33554422 -> -0.003704587068022832
Time taken: 13.94 min

MNIST Multinomial Logistic Regression

A very simply code example for training the multinomial logistic regression is on the MNIST dataset. Here we use the data from the digit recognizer kaggle competetion.

    Dataset trainingSet = MNISTReader.readMNISTTrainImages("/home/user/datasets/mnist/kaggle/train.csv");

    IntFunction<RegressionLearner> factory = (i) -> {
    	  // take care of not sharing any state from the outside, since classes are trained in parallel
        StochasticGradientDescent minimizer = StochasticGradientDescentBuilder
        .create(0.01)
        .holdoutValidationPercentage(0.1d)
        .weightUpdater(new L2Regularizer(0.1))
        .progressReportInterval(1_000_000)
        .build();
      RegressionLearner learner = new RegressionLearner(minimizer,
          new SigmoidActivationFunction(), new LogLoss());
      learner.setNumPasses(50);
      learner.verbose();
      return learner;
    };

    MultinomialRegressionLearner learner = new MultinomialRegressionLearner(factory);
    learner.verbose();

    MultinomialRegressionModel model = learner.train(() -> trainingSet.asStream());
    MultinomialRegressionClassifier clf = new MultinomialRegressionClassifier(model);    
    // do some classifications

The accuracy and confusion matrix on a test set looks like this:

 31280 /  42000 acc: 0.7447619047619047
 3680    5  111  110   19  187  152   23   95   42 <-   744   17%	 0
    6 4553  212  254  127  157   52  187  544  137 <-  1676   27%	 1
   53   37 2916  344   53   46  182   33   54   17 <-   819   22%	 2
   31   11  328 3052   77  447   24  208  378   82 <-  1586   34%	 3
   65   15  121   66 3249  402   46  168   84  675 <-  1642   34%	 4
  130   28   67  195  104 1957  107    1  323   17 <-   972   33%	 5
   71   14  181   48   60   91 3511    3   29    2 <-   499   12%	 6
   27    7   74  119   22   86    0 3481   38  698 <-  1071   24%	 7
   59   11  143   88   57  271   45    4 2438   75 <-   753   24%	 8
   10    3   24   75  304  151   18  293   80 2443 <-   958   28%	 9

License

Since I am Apache committer, I consider everything inside of this repository licensed by Apache 2.0 license, although I haven't put the usual header into the source files.

If something is not licensed via Apache 2.0, there is a reference or an additional licence header included in the specific source file.

Maven

If you use maven, you can get the latest release using the following dependency:

 <dependency>
     <groupId>de.jungblut.ml</groupId>
     <artifactId>tjungblut-online-ml</artifactId>
     <version>0.5</version>
 </dependency>

Build

You will need Java 8 to build this library.

You can simply build with:

mvn clean package install

The created jars contains debuggable code + sources + javadocs.

If you want to skip testcases you can use:

mvn clean package install -DskipTests

If you want to skip the signing process you can do:

mvn clean package install -Dgpg.skip=true

About

Online Machine Learning Algorithms

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages