You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I used the auto to plot the bifurcation diagram of my ode set, as the figures attached that there is no multi-stability when S1 =1.5 based on the bifurcation diagram, which should mean that varying the initial conditions the steady states should keep the same.
But when I changed the initial condition, the level of each gene is different.
For example, S1=1.5, when initial condition :ics_1 = {'Y': 0.01, 'A': 1.1, 'N': 1.5, 'Z': 0.1, 'C': 1, 'V': 0.1, 'H': 2}, the level of A is 0.6 which fits the bifurcation diagram, but when ics_1 = {'Y': 0.01, 'A': 3.1, 'N': 1.5, 'Z': 0.1, 'C': 1, 'V': 0.1, 'H': 2}, the level of A is 3.7, these results shows there should be at least 2 states when S1=1.5 which didn't fit the bifurcation diagram?
time = m[:, 0] # Time data
Y = m[:, 1] # 'Y' variable data
A = m[:, 2] # 'A' variable data
N = m[:, 3] # 'N' variable data
Z = m[:, 4] # 'Z' variable data
C = m[:, 5] # 'C' variable data
V = m[:, 6] # 'V' variable data
H = m[:, 7] # 'H' variable data
plt.figure(figsize=(16,3))
plt.plot(time, A, label='A')
plt.plot(time, N, label='N ')
plt.plot(time, Z, label='Z ')
plt.plot(time,H, label='H ')
plt.plot(time,Y, label='Y ')
ics_title = ', '.join([f'{key}={val}' for key, val in ics_1.items()])
plt.xlabel('Time')
plt.ylabel('Concentration')
#plt.title('Simulation Results of SCLC Model')
plt.title(f'Simulation Results of SCLC Model with Initial Conditions: {ics_title}')
plt.legend(loc='best')
plt.grid(True)
plt.show()
Hi, I used the auto to plot the bifurcation diagram of my ode set, as the figures attached that there is no multi-stability when S1 =1.5 based on the bifurcation diagram, which should mean that varying the initial conditions the steady states should keep the same.
But when I changed the initial condition, the level of each gene is different.
For example, S1=1.5, when initial condition :ics_1 = {'Y': 0.01, 'A': 1.1, 'N': 1.5, 'Z': 0.1, 'C': 1, 'V': 0.1, 'H': 2}, the level of A is 0.6 which fits the bifurcation diagram, but when ics_1 = {'Y': 0.01, 'A': 3.1, 'N': 1.5, 'Z': 0.1, 'C': 1, 'V': 0.1, 'H': 2}, the level of A is 3.7, these results shows there should be at least 2 states when S1=1.5 which didn't fit the bifurcation diagram?
I attached my code here:
model_sclc_2 = """
k_0Y = 0.1; s0_Y = 0.5; K_Y_S1 = 1; n_Y_S1 = 4; K_AY = 4; n_AY = 5;
k_0A = 0.4; K_A = 4.5; K_AA = 1.7; n_AA = 2.7; K_NA = 1.5; n_NA = 3.3;
K_HA = 1.5; n_HA = 3.3; r_dA = 1.3; k_0N = 1.09; K_N = 2.5; K_NN = 0.2;
n_NN = 5.84; K_AN = 3.77; n_AN = 5.61; r_dN = 0.24; K_A_S1 = 3.4; n_A_S1 = 3.85;
s0_N = 0.46; K_N_S1 = 1.94; n_N_S1 = 4.52; S1 = 1.2;
k_0Z = 0.001; s0_Z = 0.1; K_Z_N = 1; n_Z_N = 3; K_Z_S = 1; n_Z_S = 1; r_dZ = 2;
k_0C = 1; s0_C = 1; K_S1_C = 1; n_S1_C = 1; r_dC = 1;
k_0V = 1; s0_V = 1; K_V_S1 = 1; n_V_S1 = 1; K_AV = 1; n_AV = 1; r_dV = 1;
k_0H = 1; s0_H = 1; K_AH = 1; n_AH = 1; K_NH = 1; n_NH = 1; r_dH = 1;
"""
r = te.loada(model_sclc_2)
ics_1 = {'Y': 0.01, 'A':1.1, 'N': 1.5, 'Z': 0.1, 'C': 1, 'V': 0.1, 'H': 2}
for var, val in ics_1.items():
setattr(r, var, val)
pars = {
'k_0Y': 0.1, 's0_Y': 0.8, 'K_Y_S1': 1.6, 'n_Y_S1': 5, 'K_AY': 5, 'n_AY': 5,
'k_0A': 0.826, 'K_A': 3.82, 'K_AA': 1.8, 'n_AA': 3, 'K_NA': 3, 'n_NA': 5,
'K_HA': 1, 'n_HA': 3, 'r_dA': 1.59, 'k_0N': 0.01, 'K_N': 0.7, 'K_NN': 2.5,
'n_NN': 5, 'K_AN': 3.5, 'n_AN': 5, 'r_dN': 0.99, 'K_A_S1': 1.5, 'n_A_S1': 5,
's0_N': 0.9, 'K_N_S1': 1.5, 'n_N_S1': 5, 'S1': 1.5, 'k_0Z': 0.0249,
's0_Z': 0.8237, 'K_Z_N': 3.5, 'n_Z_N': 4, 'K_Z_S': 1.4568, 'n_Z_S': 4.6874,
'r_dZ': 2, 'k_0C': 0.1665, 's0_C': 0.5962, 'K_S1_C': 0.33, 'n_S1_C': 4,
'r_dC': 0.55, 'k_0V': 0.1, 's0_V': 1, 'K_V_S1': 3, 'n_V_S1': 4, 'K_AV': 1,
'n_AV': 4, 'r_dV': 1, 'k_0H': 0.1, 's0_H': 1, 'K_AH': 3, 'n_AH': 3,
'K_NH': 1, 'n_NH': 4, 'r_dH': 1
}
for k in pars:
setattr(r, k, pars[k])
m = r.simulate(0, 1000, 5000)
time = m[:, 0] # Time data
Y = m[:, 1] # 'Y' variable data
A = m[:, 2] # 'A' variable data
N = m[:, 3] # 'N' variable data
Z = m[:, 4] # 'Z' variable data
C = m[:, 5] # 'C' variable data
V = m[:, 6] # 'V' variable data
H = m[:, 7] # 'H' variable data
plt.figure(figsize=(16,3))
plt.plot(time, A, label='A')
plt.plot(time, N, label='N ')
plt.plot(time, Z, label='Z ')
plt.plot(time,H, label='H ')
plt.plot(time,Y, label='Y ')
ics_title = ', '.join([f'{key}={val}' for key, val in ics_1.items()])
plt.xlabel('Time')
plt.ylabel('Concentration')
#plt.title('Simulation Results of SCLC Model')
plt.title(f'Simulation Results of SCLC Model with Initial Conditions: {ics_title}')
plt.legend(loc='best')
plt.grid(True)
plt.show()
auto = Plugin("tel_auto2000")
auto.setProperty("SBML", r.getCurrentSBML())
auto.setProperty("ScanDirection", "Positive")
auto.setProperty("PrincipalContinuationParameter", "S1")
auto.setProperty("PCPLowerBound", 0)
auto.setProperty("PCPUpperBound", 5)
auto.setProperty("NMX", 10000)
auto.execute()
print("Summary: ", auto.BifurcationSummary)
pts = auto.BifurcationPoints
lbls = auto.BifurcationLabels
biData = auto.BifurcationData
biData.plotBifurcationDiagram(pts, lbls)
The text was updated successfully, but these errors were encountered: