About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the minimum value of a double-precision floating-point strided array according to a mask.
npm install @stdlib/stats-base-dmskmin
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var dmskmin = require( '@stdlib/stats-base-dmskmin' );
Computes the minimum value of a double-precision floating-point strided array according to a mask.
var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0 ] );
var mask = new Uint8Array( [ 0, 0, 1, 0 ] );
var v = dmskmin( x.length, x, 1, mask, 1 );
// returns -2.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: stride length for
x
. - mask: mask
Uint8Array
. If amask
array element is0
, the corresponding element inx
is considered valid and included in computation. If amask
array element is1
, the corresponding element inx
is considered invalid/missing and excluded from computation. - strideMask: stride length for
mask
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the minimum value of every other element in x
,
var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var x = new Float64Array( [ 1.0, 2.0, 7.0, -2.0, -4.0, 3.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var v = dmskmin( 4, x, 2, mask, 2 );
// returns -4.0
Note that indexing is relative to the first index. To introduce offsets, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dmskmin( 4, x1, 2, mask1, 2 );
// returns -2.0
Computes the minimum value of a double-precision floating-point strided array according to a mask and using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0 ] );
var mask = new Uint8Array( [ 0, 0, 1, 0 ] );
var v = dmskmin.ndarray( x.length, x, 1, 0, mask, 1, 0 );
// returns -2.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetMask: starting index for
mask
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on a starting indices. For example, to calculate the minimum value for every other element in x
starting from the second element
var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var x = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var v = dmskmin.ndarray( 4, x, 2, 1, mask, 2, 1 );
// returns -2.0
- If
N <= 0
, both functions returnNaN
.
var uniform = require( '@stdlib/random-array-uniform' );
var bernoulli = require( '@stdlib/random-array-bernoulli' );
var dmskmin = require( '@stdlib/stats-base-dmskmin' );
var uniformOptions = {
'dtype': 'float64'
};
var bernoulliOptions = {
'dtype': 'uint8'
};
var x = uniform( 10, -50.0, 50.0, uniformOptions );
var mask = bernoulli( x.length, 0.2, bernoulliOptions );
console.log( x );
console.log( mask );
var v = dmskmin( x.length, x, 1, mask, 1 );
console.log( v );
#include "stdlib/stats/base/dmskmin.h"
Computes the minimum value of a double-precision floating-point strided array according to a mask.
#include <stdint.h>
const double x[] = { 1.0, -2.0, 2.0 };
const uint8_t mask[] = { 0, 1, 0 };
double v = stdlib_strided_dmskmin( 3, x, 1, mask, 1 );
// returns 1.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - Mask:
[in] uint8_t*
mask array. If aMask
array element is0
, the corresponding element inX
is considered valid and included in computation. If aMask
array element is1
, the corresponding element inX
is considered invalid/missing and excluded from computation. - strideMask:
[in] CBLAS_INT
stride length forMask
.
double stdlib_strided_dmskmin( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const uint8_t *Mask, const CBLAS_INT strideMask );
Computes the minimum value of a double-precision floating-point strided array according to a mask and using alternative indexing semantics.
#include <stdint.h>
const double x[] = { 1.0, -2.0, 2.0 };
const uint8_t mask[] = { 0, 1, 0 };
double v = stdlib_strided_dmskmin( 3, x, 1, 0, mask, 1, 0 );
// returns 1.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] double*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Mask:
[in] uint8_t*
mask array. If aMask
array element is0
, the corresponding element inX
is considered valid and included in computation. If aMask
array element is1
, the corresponding element inX
is considered invalid/missing and excluded from computation. - strideMask:
[in] CBLAS_INT
stride length forMask
. - offsetMask:
[in] CBLAS_INT
starting index forMask
.
double stdlib_strided_dmskmin_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const uint8_t *Mask, const CBLAS_INT strideMask, const CBLAS_INT offsetMask );
#include "stdlib/stats/base/dmskmin.h"
#include <stdint.h>
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
// Create a mask array:
const uint8_t mask[] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 };
// Specify the number of elements:
const int N = 5;
// Specify the stride lengths:
const int strideX = 2;
const int strideMask = 2;
// Compute the minimum value:
double v = stdlib_strided_dmskmin( N, x, strideX, mask, strideMask );
// Print the result:
printf( "min: %lf\n", v );
}
@stdlib/stats-base/dmin
: calculate the minimum value of a double-precision floating-point strided array.@stdlib/stats-base/dmskmax
: calculate the maximum value of a double-precision floating-point strided array according to a mask.@stdlib/stats-base/dnanmin
: calculate the minimum value of a double-precision floating-point strided array, ignoring NaN values.@stdlib/stats-base/dnanmskmin
: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring NaN values.@stdlib/stats-base/mskmin
: calculate the minimum value of a strided array according to a mask.@stdlib/stats-base/smskmin
: calculate the minimum value of a single-precision floating-point strided array according to a mask.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.