Skip to content

Adaptive Synthetic Sampling Approach for Imbalanced Learning

License

Notifications You must be signed in to change notification settings

stavskal/ADASYN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Synthetic Sampling Approach for Imbalanced Learning

ADASYN is a python module that implements an adaptive oversampling technique for skewed datasets.

Many ML algorithms have trouble dealing with largely skewed datasets. If your dataset is 1000 examples and 950 of them belong to class 'Haystack' and the rest 50 belong to class 'Needle' it gets hard to predict new unseen data that belong to 'Needle' . What this algorithm does is create new artificial data that belong to the minority class by adding some semi-random noise to existing examples. For more information read the full paper

Dependencies

  • pip (needed for install)
  • numpy
  • scipy
  • scikit-learn

Installation

To use ADASYN you will need to running the following :

  pip install git+https://github.com/stavskal/ADASYN    

After you have installed the packages you can proceed with using:

from adasyn import ADASYN
adsn = ADASYN(k=7,imb_threshold=0.6, ratio=0.75)
new_X, new_y = adsn.fit_transform(X,y)  # your imbalanced dataset is in X,y

# In many applications you may want to keep artificial data separately
# adsn.index_new is a list that holds the indexes of these examples

Original paper can be found here

This module implements the idea presented in the paper by Haibo He et al. and also includes oversampling for multiclass classification problems. It is designed to be compatible with [scikit-learn] (https://github.com/scikit-learn/scikit-learn). It focuses on oversampling the examples that are harder to classify and has shown results which sometimes outperform SMOTE or SMOTEboost.

An example can be seen below:

alt tag

Props to fmfn who implemented different oversampling techniques for his good code structure, which highly influenced this module, and documentation

Reference:

  1. H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning,” in Proc. Int. Joint Conf. Neural Networks (IJCNN’08), pp. 1322-1328, 2008.

About

Adaptive Synthetic Sampling Approach for Imbalanced Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages