Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages

import os
from jwst import datamodels


Expand All @@ -39,7 +39,7 @@ def detector_avg_and_median_per_integration(filename):
"""
model = datamodels.open(filename)

nints = data.shape[0]
nints = model.data.shape[0]
sci_medians = []
ref_medians = []
sci_means = []
Expand All @@ -51,26 +51,28 @@ def detector_avg_and_median_per_integration(filename):
ref_clip_median = []
ref_clip_dev = []

refpix = (model.dq & datamodels.dqflags.pixel['REFERENCE_PIXEL'] > 0)
scipix = (model.dq & datamodels.dqflags.pixel['REFERENCE_PIXEL'] == 0)
#refpix = (model.dq & datamodels.dqflags.pixel['REFERENCE_PIXEL'] > 0)
#scipix = (model.dq & datamodels.dqflags.pixel['REFERENCE_PIXEL'] == 0)

for integ in range(nints):
dq = model.dq[integ, :, :]
data = model.data[integ, :, :]
refpix = (dq & datamodels.dqflags.pixel['REFERENCE_PIXEL'] > 0)
scipix = (dq & datamodels.dqflags.pixel['REFERENCE_PIXEL'] == 0)
dq = model.dq#[integ, :, :]
data = model.data#[integ, :, :]
refpix = (dq[integ,: ,:] & datamodels.dqflags.pixel['REFERENCE_PIXEL'] > 0)
scipix = (dq[integ,: ,:] & datamodels.dqflags.pixel['REFERENCE_PIXEL'] == 0)

frame = data[integ, :, :]

sci_medians.append(np.median(data[scipix]))
ref_medians.append(np.median(data[refpix]))
sci_means.append(np.mean(data[scipix]))
ref_means.append(np.mean(data[refpix]))
sci_medians.append(np.nanmedian(frame[scipix]))
ref_medians.append(np.nanmedian(frame[refpix]))
sci_means.append(np.nanmean(frame[scipix]))
ref_means.append(np.nanmean(frame[refpix]))

mn, med, stdev = sigma_clipped_stats(data[scipix], sigma=3)
mn, med, stdev = sigma_clipped_stats(frame[scipix], sigma=3)
sci_clip_mean.append(mn)
sci_clip_median.append(med)
sci_clip_dev.append(stdev)

mn, med, stdev = sigma_clipped_stats(data[refpix], sigma=3)
mn, med, stdev = sigma_clipped_stats(frame[refpix], sigma=3)
ref_clip_mean.append(mn)
ref_clip_median.append(med)
ref_clip_dev.append(stdev)
Expand Down Expand Up @@ -157,11 +159,17 @@ def create_histogram(filename):

"""
data = fits.open(filename)
header = data[0].header
filtername = header['FILTER']
detector = header['DETECTOR']
subarr = header['SUBARRAY']

in_dir, in_base = os.path.split(filename)
outfile = os.path.join(in_dir, f'histogram_{in_base}.png')

if len(data.shape) == 2:
obs = int(in_base[7:10])

if len(data[1].data.shape) == 2:
# rate file
hist, bin_edges = np.histogram(data)

Expand All @@ -175,18 +183,43 @@ def create_histogram(filename):
f.savefig(outfile)
#plt.savefit(outfile)

elif len(data.shape) == 3:
elif len(data[1].data.shape) == 3:
# rateints file
for integ in range(data.shape[0]):
hist, bin_edges = np.histogram(data[integ, :, :])
for integ in range(data[1].shape[0]):
integration = data[1].data[integ, :, :]
finite = np.isfinite(integration)
hist, bin_edges = np.histogram(integration[finite], bins=np.linspace(-10,30,400))


#print(bin_edges)
#print(hist)
# convert bin edges to bin centers
#bins = bin_edges[0:-1] + (bin_edges[1:] - bin_edges[0:-1]) / 2.

# Plot
f, a = plt.subplots()
a.bar(bin_edges[:-1], hist, width=1)

save_multi_image(outfile)
"""
f, a = plt.subplots(figsize=(8, 6))
a.bar(bin_edges[:-1], hist, color='blue', width=0.1)
a.set_xlim(-0.1, 4)
a.set_ylabel('Num. Pixels')
a.set_xlabel('Signal Rate (DN/sec)')
a.set_title(f'Obs 4 Signal Rates, {detector}, {filtername}, Integration {integ+1}')

outfile = os.path.join(in_dir, f'histogram_obs4_{detector}_{filtername}_integration{integ+1}.jpg')
#plt.show()
f.savefig(outfile)
plt.close()
"""

n, bins, patches = plt.hist(integration[finite], bins=np.linspace(-0.1,4,41), alpha=0.25)
plt.ylabel('Num. Pixels')
plt.xlabel('Signal Rate (DN/sec)')
plt.title(f'Obs {obs} Signal Rates, {detector}, {subarr}, {filtername} per Integration')
plt.subplots_adjust(left=0.15)
outfile = os.path.join(in_dir, f'histogram_obs{obs}_{subarr}_{detector}_{filtername}.png')
plt.savefig(outfile)
plt.close()
#save_multi_image(outfile)

def save_multi_image(filename):
"""Save multiple matplotlib plots to a single PDF
Expand Down