Skip to content

shiqi1994/PageRankNibble_reimplementation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PageRankNibble_reimplementation

This is the student project in Rome-Moscow school 2020.

Requirements

Following packages can be installed using pip or conda.

networkx 2.5
numpy 1.19.2
pydot 1.3.0
pygraphviz 1.3
matplotlib 3.3.2
scipy 3.3.2
scikit-learn 0.23.2

Usage

python main_case1.py

Note that

  • PageRankNibble algorithem is reimplemented in the function PageRankNibble_undirected.py.

  • main_case1.py and main_case2.py use synthetic data.

  • main_case3.py use UCI ML Wine recognition datasets. https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

  • To apply different k in k-NN algorithem, please modify the variable n_neighbors, and get accuracy under different k.

  • Also you can choose a start point by modify the variable Seed.

Results

Experiment result on synthetic data (1/2)

13.png 24.png

Experiment result on synthetic data (2/2)

1133.png 2244.png

Experiment result on UCI ML Wine recognition datasets

111222.png

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages