Skip to content

shellydeng/robustqa

 
 

Repository files navigation

Starter code for robustqa track

  • Download datasets from here
  • Setup environment with conda env create -f environment.yml
  • Train a baseline MTL system with python train.py --do-train --eval-every 2000 --run-name baseline
  • Evaluate the system on test set with python train.py --do-eval --sub-file mtl_submission.csv --save-dir save/baseline-01
  • Upload the csv file in save/baseline-01 to the test leaderboard. For the validation leaderboard, run python train.py --do-eval --sub-file mtl_submission_val.csv --save-dir save/baseline-01 --eval-dir datasets/oodomain_val

About

Default final project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.6%
  • Jupyter Notebook 12.4%