Skip to content

shayandaneshvar/braTS-2020

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Brain Tumor Segmentation using 3D UNet and Variants

Full Report

Guidelines

Important Papers

Related Papers

Residual UNet paper https://arxiv.org/pdf/1909.12901v2.pdf https://www.frontiersin.org/articles/10.3389/fncom.2020.00025/full Attention U-Net: Learning Where to Look for the Pancreas (2D Unet with sophisticated attention) Brain Tumor Segmentation and Survival Prediction using 3D Attention UNet (Trivial Channel Attention on 3D UNet)

Datasets

  • BraTS 2020 (Test + Validation sets)
    • Multi-modal scans available as NIfTI images .nii
    • Four channels of information - four different volumes of the same image
      • T1/Native
      • T1CE/ post-contrast T1-weighted (same as first one but contrasted)
      • T2 Weighted
      • T2 Fluid attenuated inversion recovery volumes/ FLAIR
    • Labels/Annotations
      • 0: unlabeled volume: the background and parts of the brain which is normal
      • 1: Necrotic and Non-enhancing tumor core (NCR/NET)
      • 2: Peritumoral Edema (ED)
      • 4: GD-enhancing tumor (ET)

Report

Dataset stuff:

  • Download dataset and unzip + install nibabel (Shayan)
  • (FIX) Rename W39_1998.09.19_Segm -> BraTS20_Training_355_seg (Shayan)
  • MinMax Scaler + Combine all volumes except for T1 native as T1 Native is the same as T1CE with worse contrast (Shayan)
  • label 4 -> 3 (Shayan)
  • Crop images and remove most of the black section (Shayan)
  • (Extra) Drop volumes where there's not much annotation?? (Did not do this as there's not many images, to just lose one!)

Metrics

  • Dice Coefficient
  • Accuracy
  • AUC-ROC
  • ...

Models

For segmentation, variations of 3D Unet is being used, namely 3DUNet (Concatenative skips), Residual 3DUNet (Additive skips), Attention 3DUNet

original 2D UNet

Releases

No releases published

Packages

No packages published