Skip to content

Efficient Learning of Non-Autoregressive Graph Variational Autoencoders for Molecular Graph Generation

Notifications You must be signed in to change notification settings

seokhokang/graphvae_approx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

graphvae_approx

Tensorflow implementation of the model described in the paper Efficient Learning of Non-Autoregressive Graph Variational Autoencoders for Molecular Graph Generation

Components

  • preprocessing.py - script for preprocessing data
  • train.py - script for model training
  • test.py - script for model evaluation (molecular graph generation)
  • GVAE.py - model architecture

Dependencies

  • Python
  • TensorFlow
  • RDKit
  • NumPy
  • scikit-learn
  • sparse

Citation

@Article{Kwon2019,
  title={Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation},
  author={Kwon, Youngchun and Yoo, Jiho and Choi, Youn-Suk and Son, Won-Joon and Lee, Dongseon and Kang, Seokho},
  journal={Journal of Cheminformatics},
  volume={11},
  pages={70},
  year={2019},
  doi={10.1186/s13321-019-0396-x}
}

About

Efficient Learning of Non-Autoregressive Graph Variational Autoencoders for Molecular Graph Generation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages