Skip to content

An example project showing how to use AWS Lambda to deploy your PyTorch model

Notifications You must be signed in to change notification settings

sengstacken/sam-pytorch-image-classification

 
 

Repository files navigation

SAM PyTorch model inference application

Table of Contents

Introduction

This is a sample SAM application to deploy a PyTorch model on AWS Lambda.

It deploys a computer vision classifier by receving a URL of an image and returns the predicted class with a confidence value.

The file structure of this application is the following:

.
├── README.md                       <-- This instructions file
├── event.json                      <-- API Gateway Proxy Integration event payload
├── layer                           <-- Scripts for setting up the Lambda Layer for PyTorch
│   ├── create_code_buckets.sh
│   ├── create_layer_zipfile.sh
│   ├── publish_lambda_layers.sh  
│   └──python                      
│       └──  unzip_requirements.py     
├── pytorch                         <-- Source code for a lambda function
│   ├── __init__.py
│   ├── app.py                      <-- Lambda function code
│   ├── requirements.txt            <-- Python requirements describing package dependencies to be included in Lambda layer
├── template.yaml                   <-- SAM Template
└── tests                           <-- Unit tests
    └── unit
        ├── __init__.py
        └── test_handler.py

Requirements

Setup process

Create S3 Bucket

First, we need a S3 bucket where we can upload our Lambda functions and layers packaged as ZIP files before we deploy anything - If you don't have a S3 bucket to store code artifacts then this is a good time to create one:

aws s3 mb s3://BUCKET_NAME

Upload your PyTorch model to S3

The SAM application expects a PyTorch model in TorchScript format to be saved to S3 along with a classes text file with the output class names.

An example of packaging and uploading a trained resnet PyTorch model to S3 is shown below:

# save the PyTorch model in TorchScript format
import torch
trace_input = torch.ones(1,3,299,299).cuda()
jit_model = torch.jit.trace(model.float(), trace_input)
torch.jit.save(jit_model, 'resnet50_jit.pth')

# bundle the model with the classes text file in a tar.gz file
import tarfile
with tarfile.open('model.tar.gz', 'w:gz') as f:
    f.add('resnet50_jit.pth')
    f.add('classes.txt')

# upload tarfile to S3
import boto3
s3 = boto3.resource('s3')
# replace 'mybucket' with the name of your S3 bucket
s3.meta.client.upload_file('model.tar.gz', 
    'REPLACE_THIS_WITH_YOUR_MODEL_S3_BUCKET_NAME', 
    'REPLACE_THIS_WITH_YOUR_MODEL_S3_OBJECT_KEY')

Function request/response API

Lambda Request Body format

The Lambda function expects a JSON body request object containing the URL of an image to classify.

Example:

{
    "url": "REPLACE_THIS_WITH_AN_IMAGE_URL"
}

Lambda Response format

The Lambda function will return a JSON object containing the predicted class and confidence score.

Example:

{
    "statusCode": 200,
    "body": {
        "class": "english_cocker_spaniel",
        "confidence": 0.99
    }
}

Local development

Creating test Lambda Environment Variables

First create a file called env.json with the payload similar to the following substituting the values for the S3 Bucket and Key where your PyTorch model has been saved on S3.

{
    "PyTorchFunction": {
      "MODEL_BUCKET": "REPLACE_THIS_WITH_YOUR_MODEL_S3_BUCKET_NAME",  
      "MODEL_KEY": "REPLACE_THIS_WITH_YOUR_MODEL_S3_OBJECT_KEY"      
    }
}

Invoking function locally using a local sample payload

Edit the file named event.json and enter a value for the JSON value url to the image you want to classify.

Call the following sam command to test the function locally.

sam local invoke PyTorchFunction -n env.json -e event.json

Invoking function locally through local API Gateway

sam local start-api -n env.json

If the previous command ran successfully you should now be able to send a post request to the local endpoint.

An example is the following:

curl -d "{\"url\":\"REPLACE_THIS_WITH_AN_IMAGE_URL\"}" \
    -H "Content-Type: application/json" \
    -X POST http://localhost:3000/invocations

SAM CLI is used to emulate both Lambda and API Gateway locally and uses our template.yaml to understand how to bootstrap this environment (runtime, where the source code is, etc.) - The following excerpt is what the CLI will read in order to initialize an API and its routes:

...
Events:
    PyTorch:
        Type: Api # More info about API Event Source: https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#api
        Properties:
            Path: /invocations
            Method: post

Packaging and deployment

AWS Lambda Python runtime requires a flat folder with all dependencies including the application. SAM will use CodeUri property to know where to look up for both application and dependencies:

...
    PyTorchFunction:
        Type: AWS::Serverless::Function
        Properties:
            CodeUri: pytorch/
            ...

Next, run the following command to package our Lambda function to S3:

sam package \
    --output-template-file packaged.yaml \
    --s3-bucket REPLACE_THIS_WITH_YOUR_S3_BUCKET_NAME

Next, the following command will create a Cloudformation Stack and deploy your SAM resources. You will need to override the default parameters for the bucket name and key. This is done by passing the --parameter-overrides option to the deploy command.

sam deploy \
    --template-file packaged.yaml \
    --stack-name pytorch-sam-app \
    --capabilities CAPABILITY_IAM \
    --parameter-overrides BucketName=REPLACE_THIS_WITH_YOUR_MODEL_S3_BUCKET_NAME ObjectKey=REPLACE_THIS_WITH_YOUR_MODEL_S3_OBJECT_KEY

See Serverless Application Model (SAM) HOWTO Guide for more details in how to get started.

After deployment is complete you can run the following command to retrieve the API Gateway Endpoint URL:

aws cloudformation describe-stacks \
    --stack-name pytorch-sam-app \
    --query 'Stacks[].Outputs[?OutputKey==`PyTorchApi`]' \
    --output table

Fetch, tail, and filter Lambda function logs

To simplify troubleshooting, SAM CLI has a command called sam logs. sam logs lets you fetch logs generated by your Lambda function from the command line. In addition to printing the logs on the terminal, this command has several nifty features to help you quickly find the bug.

NOTE: This command works for all AWS Lambda functions; not just the ones you deploy using SAM.

sam logs -n PyTorchFunction --stack-name pytorch-sam-app --tail

You can find more information and examples about filtering Lambda function logs in the SAM CLI Documentation.

Testing

Next, we install test dependencies and we run pytest against our tests folder to run our initial unit tests:

pip install pytest pytest-mock --user
python -m pytest tests/ -v

Cleanup

In order to delete our Serverless Application recently deployed you can use the following AWS CLI Command:

aws cloudformation delete-stack --stack-name pytorch-sam-app

Advanced concepts

Have shown how to create a SAM application to do PyTorch model inference. Now you will learn how to create your own Lambda Layer to package the PyTorch dependencies.

Creating custom Lambda Layer

The project uses Lambda layers for deploying the PyTorch libraries. Lambda Layers allow you to bundle dependencies without needing to include them in your application bundle.

The project defaults to using a public Lambda Layer ARN arn:aws:lambda:eu-west-1:934676248949:layer:pytorchv1-py36:2 w containing the PyTorch v1.1.0 packages. It is publically accessible. To build and publish your own PyTorch layer follow the instuctions below.

AWS Lambda has a limit of 250 MB for the deployment package size including lamba layers. PyTorch plus its dependencies is more than this so we need to implement a trick to get around this limit. We will create a zipfile called .requirements.zip with all the PyTorch and associated packages. We will then add this zipfile to the Lambda Layer zipfile along with a python script called unzip_requirements.py. The python script will extract the zipfile .requirements.zip to the /tmp when the Lambda execution context is created.

Layer creation steps

Goto the directory named layer and run the script named create_layer_zipfile.sh. This will launch the command sam build --use-container to download the packages defined in the requirements.txt file. The script will remove unncessary files and directories and then create the zipfile .requirements.zip then bundle this zipfile with the python script unzip_requirements.py to the zipfile pytorch-1.1.0-lambda-layer.zip.

cd layer
./create_layer_zipfile.sh

Upload the Lambda Layer zipfile to one of your S3 buckets. Take note of the S3 URL as it will be used when creating the Lambda Layer.

aws s3 cp pytorch-1.1.0-lambda-layer.zip s3://REPLACE_THIS_WITH_YOUR_S3_BUCKET_NAME/lambda-layers/pytorch-1.1.0-lambda-layer.zip

Now we can create the Lambda Layer version. Execute the following AWS CLI command:

aws lambda publish-layer-version \
    --layer-name "pytorchv1-p36" \
    --description "Lambda layer of PyTorch 1.1.0 zipped to be extracted with unzip_requirements file" \
    --content "S3Bucket=REPLACE_THIS_WITH_YOUR_S3_BUCKET_NAME,S3Key=lambda-layers/lambda-layers/pytorch-1.1.0-lambda-layer.zip" \
    --compatible-runtimes "python3.6" 

Take note of the value of the response parameter LayerVersionArn.

Testing and deploying Lambda Layer

The following examples show how you can use your own Lambda Layer in both local testing and then deploying to AWS. They will overide the default Lambda Layer in the file template.yaml.

Invoking function locally overriding Lambda Layer default

sam local invoke PyTorchFunction -n env.json -e event.json \
    --parameter-overrides LambdaLayerArn=REPLACE_WITH_YOUR_LAMBDA_LAYER_ARN

Invoking function through local API Gateway overriding Lambda Layer default

sam local start-api -n env.json \
    --parameter-overrides LambdaLayerArn=REPLACE_WITH_YOUR_LAMBDA_LAYER_ARN

Deploying the Lambda function overriding Lambda Layer default

sam deploy \
    --template-file packaged.yaml \
    --stack-name pytorch-sam-app \
    --capabilities CAPABILITY_IAM \
    --parameter-overrides LambdaLayerArn=REPLACE_WITH_YOUR_LAMBDA_LAYER_ARN BucketName=REPLACE_THIS_WITH_YOUR_MODEL_S3_BUCKET_NAME ObjectKey=REPLACE_THIS_WITH_YOUR_MODEL_S3_OBJECT_KEY

Lambda code format

At the beginning of the file pytorch/app.py you need to include the following code that will unzip the package file containing the python libs. It will extract the package zip file named .requirements.zip to the /tmp to get around the unzipped Lambda deployment package limit of 250 MB.

try:
    import unzip_requirements
except ImportError:
    pass

After these lines you can import all the python libraries you need to.

SAM and AWS CLI commands

All commands used throughout this document

# Generate event.json via generate-event command
sam local generate-event apigateway aws-proxy > event.json

# Invoke function locally with event.json as an input
sam local invoke PyTorchFunction --event event.json

# Run API Gateway locally
sam local start-api

# Create S3 bucket
aws s3 mb s3://BUCKET_NAME

# Package Lambda function defined locally and upload to S3 as an artifact
sam package \
    --output-template-file packaged.yaml \
    --s3-bucket REPLACE_THIS_WITH_YOUR_S3_BUCKET_NAME

# Deploy SAM template as a CloudFormation stack
sam deploy \
    --template-file packaged.yaml \
    --stack-name pytorch-sam-app \
    --capabilities CAPABILITY_IAM \
    --parameter-overrides BucketName=REPLACE_THIS_WITH_YOUR_MODEL_S3_BUCKET_NAME ObjectKey=REPLACE_THIS_WITH_YOUR_MODEL_S3_OBJECT_KEY    

# Describe Output section of CloudFormation stack previously created
aws cloudformation describe-stacks \
    --stack-name pytorch-sam-app \
    --query 'Stacks[].Outputs[?OutputKey==`PyTorchApi`]' \
    --output table

# Tail Lambda function Logs using Logical name defined in SAM Template
sam logs -n PyTorchFunction --stack-name pytorch-sam-app --tail

About

An example project showing how to use AWS Lambda to deploy your PyTorch model

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 81.7%
  • Shell 17.3%
  • Dockerfile 1.0%