Run pip install -r requirements.txt
- Place challenge data at
./data/physionet2019/raw/
. - Unzip challenge data.
-
cd data_prep/
-
Run
python 01_makedataset.py
-
Run
python 02_convert_data.py <scaling> <imputation> <preprocess> <seed>
Choose preprocess type, imputation type and scaler type.
-
: Scaling function to call from
custom_scalers.py
- 0: no scaling - 1: standard scaler (default) - 2: custom
-
: Imputation function to call from
imputation_functions.py
- 0: mean imputation (default) - 1: forward imputation
-
: Preprocess function to call from
manual_preprocessor.py
- 0: No preprocess - 4: Dafault - For details, please check `manual_preprocessor.py`
-
: Number of random seed to split data (Default: 1)
-
cd prediction/
python train.py
(By default hyper parameter settings, model achieves following normalized utility score.)train,valid,test 0.431469,0.415992,0.420764