Skip to content

seitalab/physionet19_mih

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1. Environment settings

Run pip install -r requirements.txt

2. Place challenge data

  1. Place challenge data at ./data/physionet2019/raw/.
  2. Unzip challenge data.

3. Data preparation

  1. cd data_prep/

  2. Run python 01_makedataset.py

  3. Run python 02_convert_data.py <scaling> <imputation> <preprocess> <seed>

    Choose preprocess type, imputation type and scaler type.

    • : Scaling function to call from custom_scalers.py

      - 0: no scaling
      - 1: standard scaler (default)
      - 2: custom
      
    • : Imputation function to call from imputation_functions.py

      - 0: mean imputation (default)
      - 1: forward imputation
      
    • : Preprocess function to call from manual_preprocessor.py

      - 0: No preprocess
      - 4: Dafault
      - For details, please check `manual_preprocessor.py`
      
    • : Number of random seed to split data (Default: 1)

4. model training

  1. cd prediction/
  2. python train.py (By default hyper parameter settings, model achieves following normalized utility score.)
    train,valid,test
    0.431469,0.415992,0.420764
    

About

Code for Physionet Challenge 2019 (NN-MIH)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages