Skip to content

sebbyjp/robo_transformers

Repository files navigation

Library for Robotic Transformers. RT-1, RT-X-1, Octo

Code Coverage ubuntu | python 3.11 | 3.10 | 3.9 macos | python 3.11 | 3.10 | 3.9

Model Type Variants Observation Space Action Space Author
RT-1 rt1main, rt1multirobot, rt1simreal text + head camera end effector pose delta Google Research, 2022
RT-1-X rt1x text + head camera end effector pose delta Google Research et al., 2023
Octo octo-base, octo-small text + head camera + Optional[wrist camera] end effector pose delta Octo Model Team et al., 2023

Installation

Requirements: python >= 3.9

From Source

Clone this repo:

git clone https://github.com/sebbyjp/robo_transformers.git

Install requirements:

python -m pip install --upgrade pip

cd robo_transformers && pip install -r requirements.txt

Run Octo inference on demo images

python -m robo_transformers.demo

Run RT-1 Inference On Demo Images

python -m robo_transformers.models.rt1.inference

See usage

You can specify a custom checkpoint path or the model_keys for the three mentioned in the RT-1 paper as well as RT-X.

python -m robo_transformers.models.rt1.inference --help

Run Inference Server

The inference server takes care of all the internal state so all you need to specify is an instruction and image.

from robo_transformers.inference_server import InferenceServer
import numpy as np

# Somewhere in your robot control stack code...

instruction = "pick block"
img = np.random.randn(256, 320, 3) # Width, Height, RGB
inference = InferenceServer()

action = inference(instruction, img)

Data Types

action, next_policy_state = model.act(time_step, curr_policy_state)

policy state is internal state of network

In this case it is a 6-frame window of past observations,actions and the index in time.

{'action_tokens': ArraySpec(shape=(6, 11, 1, 1), dtype=dtype('int32'), name='action_tokens'),
 'image': ArraySpec(shape=(6, 256, 320, 3), dtype=dtype('uint8'), name='image'),
 'step_num': ArraySpec(shape=(1, 1, 1, 1), dtype=dtype('int32'), name='step_num'),
 't': ArraySpec(shape=(1, 1, 1, 1), dtype=dtype('int32'), name='t')}

time_step is the input from the environment

{'discount': BoundedArraySpec(shape=(), dtype=dtype('float32'), name='discount', minimum=0.0, maximum=1.0),
 'observation': {'base_pose_tool_reached': ArraySpec(shape=(7,), dtype=dtype('float32'), name='base_pose_tool_reached'),
                 'gripper_closed': ArraySpec(shape=(1,), dtype=dtype('float32'), name='gripper_closed'),
                 'gripper_closedness_commanded': ArraySpec(shape=(1,), dtype=dtype('float32'), name='gripper_closedness_commanded'),
                 'height_to_bottom': ArraySpec(shape=(1,), dtype=dtype('float32'), name='height_to_bottom'),
                 'image': ArraySpec(shape=(256, 320, 3), dtype=dtype('uint8'), name='image'),
                 'natural_language_embedding': ArraySpec(shape=(512,), dtype=dtype('float32'), name='natural_language_embedding'),
                 'natural_language_instruction': ArraySpec(shape=(), dtype=dtype('O'), name='natural_language_instruction'),
                 'orientation_box': ArraySpec(shape=(2, 3), dtype=dtype('float32'), name='orientation_box'),
                 'orientation_start': ArraySpec(shape=(4,), dtype=dtype('float32'), name='orientation_in_camera_space'),
                 'robot_orientation_positions_box': ArraySpec(shape=(3, 3), dtype=dtype('float32'), name='robot_orientation_positions_box'),
                 'rotation_delta_to_go': ArraySpec(shape=(3,), dtype=dtype('float32'), name='rotation_delta_to_go'),
                 'src_rotation': ArraySpec(shape=(4,), dtype=dtype('float32'), name='transform_camera_robot'),
                 'vector_to_go': ArraySpec(shape=(3,), dtype=dtype('float32'), name='vector_to_go'),
                 'workspace_bounds': ArraySpec(shape=(3, 3), dtype=dtype('float32'), name='workspace_bounds')},
 'reward': ArraySpec(shape=(), dtype=dtype('float32'), name='reward'),
 'step_type': ArraySpec(shape=(), dtype=dtype('int32'), name='step_type')}

action

{'base_displacement_vector': BoundedArraySpec(shape=(2,), dtype=dtype('float32'), name='base_displacement_vector', minimum=-1.0, maximum=1.0),
 'base_displacement_vertical_rotation': BoundedArraySpec(shape=(1,), dtype=dtype('float32'), name='base_displacement_vertical_rotation', minimum=-3.1415927410125732, maximum=3.1415927410125732),
 'gripper_closedness_action': BoundedArraySpec(shape=(1,), dtype=dtype('float32'), name='gripper_closedness_action', minimum=-1.0, maximum=1.0),
 'rotation_delta': BoundedArraySpec(shape=(3,), dtype=dtype('float32'), name='rotation_delta', minimum=-1.5707963705062866, maximum=1.5707963705062866),
 'terminate_episode': BoundedArraySpec(shape=(3,), dtype=dtype('int32'), name='terminate_episode', minimum=0, maximum=1),
 'world_vector': BoundedArraySpec(shape=(3,), dtype=dtype('float32'), name='world_vector', minimum=-1.0, maximum=1.0)}

TODO

  • Render action, policy_state, observation specs in something prettier like pandas data frame.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages