Federico Ambrogi, Juhi Dutta, Jan Heisig, Charanjit K. Khosa, Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Wolfgang Magerl, Philipp Neuhuber, Doris Proschofsky, Humberto Reyes-Gonzalez, Jory Sonneveld, Michael Traub, Wolfgang Waltenberger, Matthias Wolf, Alicia Wongel
27 Apr 2020: SModelS version 1.2.3 is now available (what's new)
- A preprint describing the database update and SModelS' increase in constraining power will be available shortly.
- SModelS is registered in the python package index, try pip install smodels.
28 Nov 2018: SModelS version 1.2.2 is now available (what's new)
- A detailed documentation is available in the online manual
- You may also want to check the release notes and known issues
- For questions and comments, send an e-mail to: [email protected]
- To receive updates and announcements, subscribe to smodels-info.
- SModelS v1.2: long-lived particles, combination of signal regions, and other novelties, Federico Ambrogi et al., arXiv:1811.10624, CPC 251, June 2020, 106848
- Constraining new physics with searches for long-lived particles: Implementation into SModelS, Jan Heisig, Sabine Kraml, Andre Lessa, arXiv:1808.05229, Phys.Lett. B788 (2019) 87-95.
- SModelS extension with the CMS supersymmetry search results from Run 2, Juhi Dutta, Sabine Kraml, Andre Lessa, Wolfgang Waltenberger, arXiv:1803.02204, LHEP 1 (2018) no.1,5-12
- SModelS v1.1 user manual: improving simplified model constraints with efficiency maps, Federico Ambrogi, Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Jory Sonneveld, Michael Traub, Wolfgang Waltenberger arXiv:1701.06586, CPC 227 (2018) 72-98
- SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Wolfgang Magerl, Doris Proschofsky, Wolfgang Waltenberger, arXiv:1312.4175, EPJC (2014) 74:2868
Moreover
- If you use the cross section calculator please cite Pythia and NLLfast
- If you use the Fastlim results in the database, please cite Fastlim 1.0 arXiv:1402.40492, EPJC74 (2014) 11.
For convenience a .bib file is provided with the code containing all relevant references. Likewise, a .bib file is provided in the database folder with references to all the ATLAS and CMS analyses used.
SModelS is based on a general procedure to decompose Beyond the Standard Model (BSM) collider signatures presenting a Z2 symmetry into Simplified Model Spectrum (SMS) topologies. Our method provides a way to cast BSM predictions for the LHC in a model independent framework, which can be directly confronted with the relevant experimental constraints. The main SModelS ingredients are
- the decomposition of the BSM spectrum into SMS topologies
- a database of experimental SMS results
- the interface between decomposition and results database to compute limits
- For code and database releases, see Download
- For instructions on how to install SModelS, check the installation section in the manual.
- Here is the list of analyses contained in the latest database version
- Same as above but including superseded analyses
- Pretty validation plots for all analyses
- We also provide an SMS dictionary explaining the Tx names used by SModelS
See the publications and talks page
A wishlist regarding the presentation of results was compiled by the LHC reinterpretation forum, see arXiv:2003.07868.