Skip to content

runpod/ai-sdk-provider

Repository files navigation

Runpod AI SDK Provider

The Runpod provider for the AI SDK contains language model and image generation support for Runpod's public endpoints.

Setup

The Runpod provider is available in the @runpod/ai-sdk-provider module. You can install it with:

# npm
npm install @runpod/ai-sdk-provider

# pnpm
pnpm add @runpod/ai-sdk-provider

# yarn
yarn add @runpod/ai-sdk-provider

# bun
bun add @runpod/ai-sdk-provider

Provider Instance

You can import the default provider instance runpod from @runpod/ai-sdk-provider:

import { runpod } from '@runpod/ai-sdk-provider';

If you need a customized setup, you can import createRunpod and create a provider instance with your settings:

import { createRunpod } from '@runpod/ai-sdk-provider';

const runpod = createRunpod({
  apiKey: 'your-api-key', // optional, defaults to RUNPOD_API_KEY environment variable
  baseURL: 'custom-url', // optional, for custom endpoints
  headers: {
    /* custom headers */
  }, // optional
});

You can use the following optional settings to customize the Runpod provider instance:

  • baseURL string

    Use a different URL prefix for API calls, e.g. to use proxy servers or custom endpoints. Supports vLLM deployments, SGLang servers, and any OpenAI-compatible API. The default prefix is https://api.runpod.ai/v2.

  • apiKey string

    API key that is being sent using the Authorization header. It defaults to the RUNPOD_API_KEY environment variable. You can obtain your api key from the Runpod Console under "API Keys".

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Language Models

You can create language models using the provider instance. The first argument is the model ID:

import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
  model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
  prompt: 'Write a Python function that sorts a list:',
});

Returns:

  • text - Generated text string
  • finishReason - Why generation stopped ('stop', 'length', etc.)
  • usage - Token usage information (prompt, completion, total tokens)

Runpod language models can also be used in the streamText function (see AI SDK Core).

Note: Streaming is not yet supported by Runpod's public endpoints. The team is working on implementing this feature.

Model Capabilities

Model ID Description Object Generation Tool Usage
deep-cogito/deep-cogito-v2-llama-70b 70B parameter general-purpose LLM with advanced reasoning
qwen/qwen3-32b-awq 32B parameter multilingual model with strong reasoning capabilities

Chat Conversations

const { text } = await generateText({
  model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
  messages: [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'What is the capital of France?' },
  ],
});

Tool Calling

import { generateText, tool } from 'ai';
import { z } from 'zod';

const { text, toolCalls } = await generateText({
  model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
  prompt: 'What is the weather like in San Francisco?',
  tools: {
    getWeather: tool({
      description: 'Get weather information for a city',
      inputSchema: z.object({
        city: z.string().describe('The city name'),
      }),
      execute: async ({ city }) => {
        return `The weather in ${city} is sunny.`;
      },
    }),
  },
});

Additional Returns:

  • toolCalls - Array of tool calls made by the model
  • toolResults - Results from executed tools

Structured Output

import { generateObject } from 'ai';
import { z } from 'zod';

const { object } = await generateObject({
  model: runpod('qwen/qwen3-32b-awq'),
  schema: z.object({
    recipe: z.object({
      name: z.string(),
      ingredients: z.array(z.string()),
      steps: z.array(z.string()),
    }),
  }),
  prompt: 'Generate a recipe for chocolate chip cookies.',
});

Returns:

  • object - Parsed object matching your schema
  • usage - Token usage information

Image Models

You can create Runpod image models using the .imageModel() factory method.

Basic Usage

import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateImage as generateImage } from 'ai';

const { image } = await generateImage({
  model: runpod.imageModel('qwen/qwen-image'),
  prompt: 'A serene mountain landscape at sunset',
  aspectRatio: '4:3',
});

// Save to filesystem
import { writeFileSync } from 'fs';
writeFileSync('landscape.jpg', image.uint8Array);

Returns:

  • image.uint8Array - Binary image data (efficient for processing/saving)
  • image.base64 - Base64 encoded string (for web display)
  • image.mediaType - MIME type ('image/jpeg' or 'image/png')
  • warnings - Array of any warnings about unsupported parameters

Model Capabilities

Model ID Description Supported Aspect Ratios
qwen/qwen-image Text-to-image generation 1:1, 4:3, 3:4
bytedance/seedream-3.0 Advanced text-to-image model 1:1, 4:3, 3:4
black-forest-labs/flux-1-schnell Fast image generation (4 steps) 1:1, 4:3, 3:4
black-forest-labs/flux-1-dev High-quality image generation 1:1, 4:3, 3:4
black-forest-labs/flux-1-kontext-dev Context-aware image generation 1:1, 4:3, 3:4

Note: The provider uses strict validation for image parameters. Unsupported aspect ratios (like 16:9, 9:16, 3:2, 2:3) will throw an InvalidArgumentError with a clear message about supported alternatives.

Advanced Parameters

const { image } = await generateImage({
  model: runpod.imageModel('bytedance/seedream-3.0'),
  prompt: 'A sunset over mountains',
  size: '1328x1328',
  seed: 42,
  providerOptions: {
    runpod: {
      negative_prompt: 'blurry, low quality',
      enable_safety_checker: true,
    },
  },
});

Modify Image

Transform existing images using text prompts.

// Example: Transform existing image
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
  prompt: 'Transform this into a cyberpunk style with neon lights',
  aspectRatio: '1:1',
  providerOptions: {
    runpod: {
      image: 'https://example.com/input-image.jpg',
    },
  },
});

// Example: Using base64 encoded image
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
  prompt: 'Make this image look like a painting',
  providerOptions: {
    runpod: {
      image: '...',
    },
  },
});

Advanced Configuration

// Full control over generation parameters
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-dev'),
  prompt: 'A majestic dragon breathing fire in a medieval castle',
  size: '1328x1328',
  seed: 42, // For reproducible results
  providerOptions: {
    runpod: {
      negative_prompt: 'blurry, low quality, distorted, ugly, bad anatomy',
      enable_safety_checker: true,
      num_inference_steps: 50, // Higher quality (default: 28)
      guidance: 3.5, // Stronger prompt adherence (default: 2)
      output_format: 'png', // High quality format
      // Polling settings for long generations
      maxPollAttempts: 30,
      pollIntervalMillis: 4000,
    },
  },
});

// Fast generation with minimal steps
const { image } = await generateImage({
  model: runpod.imageModel('black-forest-labs/flux-1-schnell'),
  prompt: 'A simple red apple',
  aspectRatio: '1:1',
  providerOptions: {
    runpod: {
      num_inference_steps: 2, // Even faster (default: 4)
      guidance: 10, // Higher guidance for simple prompts
      output_format: 'jpg', // Smaller file size
    },
  },
});

Provider Options

Runpod image models support flexible provider options through the providerOptions.runpod object:

Option Type Default Description
negative_prompt string "" Text describing what you don't want in the image
enable_safety_checker boolean true Enable content safety filtering
image string - Input image: URL or base64 data URI (required for Flux Kontext models)
num_inference_steps number Auto Number of denoising steps (Flux: 4 for schnell, 28 for others)
guidance number Auto Guidance scale for prompt adherence (Flux: 7 for schnell, 2 for others)
output_format string "png" Output image format ("png" or "jpg")
maxPollAttempts number 60 Maximum polling attempts for async generation
pollIntervalMillis number 5000 Polling interval in milliseconds (5 seconds)

About Runpod

Runpod is the foundation for developers to build, deploy, and scale custom AI systems.

Beyond some of the public endpoints you've seen above (+ more generative media APIs), Runpod offers custom serverless endpoints, dedicated pods and instant clusters, fine-tuning, and a comprehensive hub of open-source AI repositories (like ComfyUI, Axolotl, FLUX.1-dev-juiced, Chatterbox, vLLM, and SGLang).

About

A custom provider for the Vercel AI SDK

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •