A step towards Data Science and Machine Learning
Codes and templates for ML algorithms created, modified and optimized in Python and R from the SuperDataScience Course by Kirill Ermenko(Data Scientist) and Hadelin de Ponteves(AI Entrepreneur).
- Data Preprocessing
- Importing the dataset
- Dealing with missing data
- Splitting the data into test set and training set
- Feature Scaling
- Regression
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Linear Regression
- Support Vector Regression (SVR)
- Decision Tree Regression
- Random Forest Regression
- Classification
- Logistic Regression
- K-Nearest Neighbors (K-NN)
- Support Vector Machine (SVM)
- Kernel SVM
- Naive Bayes
- Decision Tree Classifiers
- Random Forest Classifiers
- Clustering
- K-Means Clustering
- Hierarchical Clustering
- Association Rule Learning
- Apriori
- Eclat
- Reinforcement Learning
- Upper Confidence Bound(UCB)
- Thompson Sampling
- Natural Language Processing
- NLP for text analysis and classification.
- Deep Learning
- Artificial Neural Networks(ANN)
- Convolutional Neural Networks(CNN)
- Dimensionality Reduction
- Principal Component Analysis(PCA)
- Linear Discreminant Analysis(LDA)
- Kernel PCA
- Model Selection & Boosting
- Model Selection using K-Fold Cross Validation
- Parameter Tuning using Grid Search
- XGBoost