Skip to content

supervision-0.23.0

Compare
Choose a tag to compare
@LinasKo LinasKo released this 28 Aug 17:45
· 420 commits to develop since this release
27c68f2

πŸš€ Added

pexels-squirrel-short-result-optim.mp4

(video by Pexels)

  • We're introducing metrics, which currently supports xyxy boxes and masks. Over the next few releases, supervision will focus on adding more metrics, allowing you to evaluate your model performance. We plan to support not just boxes, masks, but oriented bounding boxes as well! #1442

Tip

Help in implementing metrics is very welcome! Keep an eye on our issue board if you'd like to contribute!

import supervision as sv
from supervision.metrics import MeanAveragePrecision

predictions = sv.Detections(...)
targets = sv.Detections(...)

map_metric = MeanAveragePrecision()
map_result = map_metric.update(predictions, targets).compute()

print(map_result)
print(map_result.map50_95)
print(map_result.large_objects.map50_95)
map_result.plot()

Here's a very basic way to compare model results:

πŸ“Š Example code
  import supervision as sv
  from supervision.metrics import MeanAveragePrecision
  from inference import get_model
  import matplotlib.pyplot as plt
  
  # !wget https://media.roboflow.com/notebooks/examples/dog.jpeg
  image = "dog.jpeg"
  
  model_1 = get_model("yolov8n-640")
  model_2 = get_model("yolov8s-640")
  model_3 = get_model("yolov8m-640")
  model_4 = get_model("yolov8l-640")
  
  results_1 = model_1.infer(image)[0]
  results_2 = model_2.infer(image)[0]
  results_3 = model_3.infer(image)[0]
  results_4 = model_4.infer(image)[0]
  
  detections_1 = sv.Detections.from_inference(results_1)
  detections_2 = sv.Detections.from_inference(results_2)
  detections_3 = sv.Detections.from_inference(results_3)
  detections_4 = sv.Detections.from_inference(results_4)
  
  map_n_metric = MeanAveragePrecision().update([detections_1], [detections_4]).compute()
  map_s_metric = MeanAveragePrecision().update([detections_2], [detections_4]).compute()
  map_m_metric = MeanAveragePrecision().update([detections_3], [detections_4]).compute()
  
  labels = ["YOLOv8n", "YOLOv8s", "YOLOv8m"]
  map_values = [map_n_metric.map50_95, map_s_metric.map50_95, map_m_metric.map50_95]
  
  plt.title("YOLOv8 Model Comparison")
  plt.bar(labels, map_values)
  ax = plt.gca()
  ax.set_ylim([0, 1])
  plt.show()

mini-benchmark

example-icon-annotator-optim.mp4

(Video by Pexels, icons by Icons8)

import supervision as sv
from inference import get_model

image = <SOURCE_IMAGE_PATH>
icon_dog = <DOG_PNG_PATH>
icon_cat = <CAT_PNG_PATH>

model = get_model(model_id="yolov8n-640")
results = model.infer(image)[0]
detections = sv.Detections.from_inference(results)

icon_paths = []
for class_name in detections.data["class_name"]:
    if class_name == "dog":
        icon_paths.append(icon_dog)
    elif class_name == "cat":
        icon_paths.append(icon_cat)
    else:
        icon_paths.append("")

icon_annotator = sv.IconAnnotator()
annotated_frame = icon_annotator.annotate(
    scene=image.copy(),
    detections=detections,
    icon_path=icon_paths
)
  • Segment Anything 2 was released this month. And while you can load its results via from_sam, we've added support to from_ultralytics for loading the results if you ran it with Ultralytics. #1354
import cv2
import supervision as sv
from ultralytics import SAM

image = cv2.imread("...")

model = SAM("mobile_sam.pt")
results = model(image, bboxes=[[588, 163, 643, 220]])
detections = sv.Detections.from_ultralytics(results[0])

polygon_annotator = sv.PolygonAnnotator()
mask_annotator = sv.MaskAnnotator()

annoated_image = mask_annotator.annotate(image.copy(), detections)
annoated_image = polygon_annotator.annotate(annoated_image, detections)

sv.plot_image(annoated_image, (12,12))

SAM2 with our annotators:

pexels_cheetah-result-optim-halfsized.mp4

🌱 Changed

  • Updated sv.Detections.from_transformers to support the transformers v5 functions. This includes the DetrImageProcessor methods post_process_object_detection, post_process_panoptic_segmentation, post_process_semantic_segmentation, and post_process_instance_segmentation. #1386
  • InferenceSlicer now features an overlap_ratio_wh parameter, making it easier to compute slice sizes when handling overlapping slices. #1434
image_with_small_objects = cv2.imread("...")
model = get_model("yolov8n-640")

def callback(image_slice: np.ndarray) -> sv.Detections:
    print("image_slice.shape:", image_slice.shape)
    result = model.infer(image_slice)[0]
    return sv.Detections.from_inference(result)

slicer = sv.InferenceSlicer(
    callback=callback,
    slice_wh=(128, 128),
    overlap_ratio_wh=(0.2, 0.2),
)

detections = slicer(image_with_small_objects)

πŸ› οΈ Fixed

  • Annotator type fixes #1448
  • New way of seeking to a specific video frame, where other methods don't work #1348
  • plot_image now clearly states the size is in inches. #1424

⚠️ Deprecated

  • overlap_filter_strategy in InferenceSlicer.__init__ is deprecated and will be removed in supervision-0.27.0. Use overlap_strategy instead.
  • overlap_ratio_wh in InferenceSlicer.__init__ is deprecated and will be removed in supervision-0.27.0. Use overlap_wh instead.

❌ Removed

  • The track_buffer, track_thresh, and match_thresh parameters in ByteTrack are deprecated and were removed as of supervision-0.23.0. Use lost_track_buffer, track_activation_threshold, and minimum_matching_threshold instead.
  • The triggering_position parameter in sv.PolygonZone was removed as of supervision-0.23.0. Use triggering_anchors instead.

πŸ† Contributors

@shaddu, @onuralpszr (Onuralp SEZER), @Kadermiyanyedi (Kader Miyanyedi), @xaristeidou (Christoforos Aristeidou), @Gk-rohan (Rohan Gupta), @Bhavay-2001 (Bhavay Malhotra), @arthurcerveira (Arthur Cerveira), @J4BEZ (Ju Hoon Park), @venkatram-dev, @eric220, @capjamesg (James), @yeldarby (Brad Dwyer), @SkalskiP (Piotr Skalski), @LinasKo (LinasKo)