-
Notifications
You must be signed in to change notification settings - Fork 126
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #766 from roboflow/keypoint-visualizations
Keypoint visualization block
- Loading branch information
Showing
5 changed files
with
700 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
266 changes: 266 additions & 0 deletions
266
inference/core/workflows/core_steps/visualizations/keypoint/v1.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,266 @@ | ||
from typing import Literal, Optional, Type, Union | ||
|
||
import numpy as np | ||
import supervision as sv | ||
from pydantic import ConfigDict, Field | ||
|
||
from inference.core.workflows.core_steps.visualizations.common.base import ( | ||
OUTPUT_IMAGE_KEY, | ||
VisualizationBlock, | ||
VisualizationManifest, | ||
) | ||
from inference.core.workflows.core_steps.visualizations.common.utils import str_to_color | ||
from inference.core.workflows.execution_engine.entities.base import WorkflowImageData | ||
from inference.core.workflows.execution_engine.entities.types import ( | ||
FLOAT_KIND, | ||
INTEGER_KIND, | ||
KEYPOINT_DETECTION_PREDICTION_KIND, | ||
STRING_KIND, | ||
StepOutputSelector, | ||
WorkflowParameterSelector, | ||
) | ||
from inference.core.workflows.prototypes.block import BlockResult, WorkflowBlockManifest | ||
|
||
TYPE: str = "roboflow_core/keypoint_visualization@v1" | ||
SHORT_DESCRIPTION = "Draws keypoints on detected objects in an image." | ||
LONG_DESCRIPTION = """ | ||
The `KeypointVisualization` block uses a detections from an | ||
keypoint detection model to draw keypoints on objects using | ||
`sv.VertexAnnotator`. | ||
""" | ||
|
||
|
||
class KeypointManifest(VisualizationManifest): | ||
type: Literal[f"{TYPE}", "KeypointVisualization"] | ||
model_config = ConfigDict( | ||
json_schema_extra={ | ||
"name": "Keypoint Visualization", | ||
"version": "v1", | ||
"short_description": SHORT_DESCRIPTION, | ||
"long_description": LONG_DESCRIPTION, | ||
"license": "Apache-2.0", | ||
"block_type": "visualization", | ||
"ui_manifest": { | ||
"section": "visualization", | ||
"icon": "far fa-braille", | ||
"blockPriority": 20, | ||
}, | ||
} | ||
) | ||
|
||
predictions: StepOutputSelector( | ||
kind=[ | ||
KEYPOINT_DETECTION_PREDICTION_KIND, | ||
] | ||
) = Field( # type: ignore | ||
description="Predictions", | ||
examples=["$steps.keypoint_detection_model.predictions"], | ||
) | ||
|
||
annotator_type: Literal["edge", "vertex", "vertex_label"] = Field( | ||
description="Type of annotator to be used for keypoint visualization.", | ||
default="edge", | ||
json_schema_extra={"always_visible": True}, | ||
) | ||
|
||
color: Union[str, WorkflowParameterSelector(kind=[STRING_KIND])] = Field( # type: ignore | ||
description="Color of the keypoint.", | ||
default="#A351FB", | ||
examples=["#A351FB", "green", "$inputs.color"], | ||
) | ||
|
||
text_color: Union[str, WorkflowParameterSelector(kind=[STRING_KIND])] = Field( # type: ignore | ||
description="Text color of the keypoint.", | ||
default="black", | ||
examples=["black", "$inputs.text_color"], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"annotator_type": { | ||
"values": ["vertex_label"], | ||
}, | ||
}, | ||
}, | ||
) | ||
text_scale: Union[float, WorkflowParameterSelector(kind=[FLOAT_KIND])] = Field( # type: ignore | ||
description="Scale of the text.", | ||
default=0.5, | ||
examples=[0.5, "$inputs.text_scale"], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"annotator_type": { | ||
"values": ["vertex_label"], | ||
}, | ||
}, | ||
}, | ||
) | ||
|
||
text_thickness: Union[int, WorkflowParameterSelector(kind=[INTEGER_KIND])] = Field( # type: ignore | ||
description="Thickness of the text characters.", | ||
default=1, | ||
examples=[1, "$inputs.text_thickness"], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"annotator_type": { | ||
"values": ["vertex_label"], | ||
}, | ||
}, | ||
}, | ||
) | ||
|
||
text_padding: Union[int, WorkflowParameterSelector(kind=[INTEGER_KIND])] = Field( # type: ignore | ||
description="Padding around the text in pixels.", | ||
default=10, | ||
examples=[10, "$inputs.text_padding"], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"annotator_type": { | ||
"values": ["vertex_label"], | ||
}, | ||
}, | ||
}, | ||
) | ||
|
||
thickness: Union[int, WorkflowParameterSelector(kind=[INTEGER_KIND])] = Field( # type: ignore | ||
description="Thickness of the outline in pixels.", | ||
default=2, | ||
examples=[2, "$inputs.thickness"], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"annotator_type": { | ||
"values": ["edge"], | ||
}, | ||
}, | ||
}, | ||
) | ||
|
||
radius: Union[int, WorkflowParameterSelector(kind=[INTEGER_KIND])] = Field( # type: ignore | ||
description="Radius of the keypoint in pixels.", | ||
default=10, | ||
examples=[10, "$inputs.radius"], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"annotator_type": { | ||
"values": ["vertex", "vertex_label"], | ||
}, | ||
}, | ||
}, | ||
) | ||
|
||
@classmethod | ||
def get_execution_engine_compatibility(cls) -> Optional[str]: | ||
return ">=1.2.0,<2.0.0" | ||
|
||
|
||
class KeypointVisualizationBlockV1(VisualizationBlock): | ||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.annotatorCache = {} | ||
|
||
@classmethod | ||
def get_manifest(cls) -> Type[WorkflowBlockManifest]: | ||
return KeypointManifest | ||
|
||
def getAnnotator( | ||
self, | ||
color: str, | ||
text_color: str, | ||
text_scale: float, | ||
text_thickness: int, | ||
text_padding: int, | ||
thickness: int, | ||
radius: int, | ||
annotator_type: str, | ||
) -> sv.annotators.base.BaseAnnotator: | ||
key = "_".join( | ||
map( | ||
str, | ||
[ | ||
color, | ||
text_color, | ||
text_scale, | ||
text_thickness, | ||
text_padding, | ||
thickness, | ||
radius, | ||
annotator_type, | ||
], | ||
) | ||
) | ||
|
||
if key not in self.annotatorCache: | ||
color = str_to_color(color) | ||
text_color = str_to_color(text_color) | ||
|
||
if annotator_type == "edge": | ||
self.annotatorCache[key] = sv.EdgeAnnotator( | ||
color=color, | ||
thickness=thickness, | ||
) | ||
elif annotator_type == "vertex": | ||
self.annotatorCache[key] = sv.VertexAnnotator( | ||
color=color, | ||
radius=radius, | ||
) | ||
elif annotator_type == "vertex_label": | ||
self.annotatorCache[key] = sv.VertexLabelAnnotator( | ||
color=color, | ||
text_color=text_color, | ||
text_scale=text_scale, | ||
text_thickness=text_thickness, | ||
text_padding=text_padding, | ||
border_radius=radius, | ||
) | ||
|
||
return self.annotatorCache[key] | ||
|
||
# Function to convert detections to keypoints | ||
def convert_detections_to_keypoints(self, detections): | ||
keypoints_xy = detections.data["keypoints_xy"] | ||
keypoints_confidence = detections.data["keypoints_confidence"] | ||
keypoints_class_name = detections.data["keypoints_class_name"] | ||
class_id = detections.class_id | ||
|
||
keypoints = sv.KeyPoints( | ||
xy=np.array(keypoints_xy, dtype=np.float32), | ||
confidence=np.array(keypoints_confidence, dtype=np.float32), | ||
class_id=np.array(class_id, dtype=int), | ||
data={"class_name": np.array(keypoints_class_name, dtype=object)}, | ||
) | ||
return keypoints | ||
|
||
def run( | ||
self, | ||
image: WorkflowImageData, | ||
predictions: sv.Detections, | ||
copy_image: bool, | ||
annotator_type: Optional[str], | ||
color: Optional[str], | ||
text_color: Optional[str], | ||
text_scale: Optional[float], | ||
text_thickness: Optional[int], | ||
text_padding: Optional[int], | ||
thickness: Optional[int], | ||
radius: Optional[int], | ||
) -> BlockResult: | ||
annotator = self.getAnnotator( | ||
color, | ||
text_color, | ||
text_scale, | ||
text_thickness, | ||
text_padding, | ||
thickness, | ||
radius, | ||
annotator_type, | ||
) | ||
|
||
keypoints = self.convert_detections_to_keypoints(predictions) | ||
|
||
annotated_image = annotator.annotate( | ||
scene=image.numpy_image.copy() if copy_image else image.numpy_image, | ||
key_points=keypoints, | ||
) | ||
return { | ||
OUTPUT_IMAGE_KEY: WorkflowImageData.copy_and_replace( | ||
origin_image_data=image, numpy_image=annotated_image | ||
) | ||
} |
70 changes: 70 additions & 0 deletions
70
tests/workflows/integration_tests/execution/test_workflow_with_keypoint_visualization.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import numpy as np | ||
import cv2 | ||
|
||
from inference.core.env import WORKFLOWS_MAX_CONCURRENT_STEPS | ||
from inference.core.managers.base import ModelManager | ||
from inference.core.workflows.core_steps.common.entities import StepExecutionMode | ||
from inference.core.workflows.execution_engine.core import ExecutionEngine | ||
|
||
|
||
WORKFLOW_KEYPOINT_VISUALIZATION = { | ||
"version": "1.1", | ||
"inputs": [ | ||
{"type": "WorkflowImage", "name": "image"}, | ||
{ | ||
"type": "WorkflowParameter", | ||
"name": "model_id", | ||
"default_value": "yolov8n-pose-640", | ||
}, | ||
], | ||
"steps": [ | ||
{ | ||
"type": "KeypointsDetectionModel", | ||
"name": "model", | ||
"image": "$inputs.image", | ||
"model_id": "$inputs.model_id", | ||
}, | ||
{ | ||
"type": "roboflow_core/keypoint_visualization@v1", | ||
"name": "visualization", | ||
"image": "$inputs.image", | ||
"predictions": "$steps.model.predictions", | ||
}, | ||
], | ||
"outputs": [ | ||
{ | ||
"type": "JsonField", | ||
"name": "visualization", | ||
"selector": "$steps.visualization.image", | ||
}, | ||
], | ||
} | ||
|
||
|
||
def test_workflow_keypoint_visualization( | ||
model_manager: ModelManager, | ||
crowd_image: np.ndarray, | ||
) -> None: | ||
# given | ||
workflow_init_parameters = { | ||
"workflows_core.model_manager": model_manager, | ||
"workflows_core.api_key": None, | ||
"workflows_core.step_execution_mode": StepExecutionMode.LOCAL, | ||
} | ||
execution_engine = ExecutionEngine.init( | ||
workflow_definition=WORKFLOW_KEYPOINT_VISUALIZATION, | ||
init_parameters=workflow_init_parameters, | ||
max_concurrent_steps=WORKFLOWS_MAX_CONCURRENT_STEPS, | ||
) | ||
|
||
# when | ||
result = execution_engine.run( | ||
runtime_parameters={ | ||
"image": crowd_image, | ||
} | ||
) | ||
|
||
assert isinstance(result, list) | ||
assert len(result) == 1 | ||
assert "visualization" in result[0] | ||
assert result[0]["visualization"].numpy_image.shape == crowd_image.shape |
Oops, something went wrong.