Skip to content

Flask extension designed to effortlessly validate requests with Pydantic based on standard Python type hints.

License

Notifications You must be signed in to change notification settings

rmoralespp/flask_typed_routes

Repository files navigation

CI pypi codecov license Downloads

Validate requests with Pydantic based on standard Python type hints.

About

flask_typed_routes is a Flask extension designed to effortlessly validate requests with Pydantic based on standard Python type hints.

Documentation: https://rmoralespp.github.io/flask_typed_routes/

Features

Requirements

  • Python 3.10+
  • Pydantic 2.0+
  • Flask

Installation

To install flask_typed_routes using pip, run the following command:

pip install flask_typed_routes

Getting Started

This tool allows you to validate request parameters in Flask, similar to how FastAPI handles validation. It supports Path, Query, Header, Cookie, and Body validation.

Example

Create a file items.py with:

import flask
import flask_typed_routes as ftr

app = flask.Flask(__name__)
ftr.FlaskTypedRoutes(app=app)


@app.get("/")
def read_root():
    return flask.jsonify({"Hello": "World"})


@app.get("/items/<user>/")
def read_items(user: str, skip: int = 0, limit: int = 10):
    return flask.jsonify({"user": user, "skip": skip, "limit": limit})

Run the server with:

flask --app items run --debug

Open your browser and go to http://127.0.0.1:5000/items/myuser/?skip=20 You will see the JSON response as:

{
  "limit": 10,
  "skip": 20,
  "user": "myuser"
}

Validation: Open your browser and go to http://127.0.0.1:5000/items/myuser/?skip=abc You will see the JSON response with the error details because the skip parameter is not an integer:

{
  "errors": [
    {
      "input": "abc",
      "loc": [
        "query",
        "skip"
      ],
      "msg": "Input should be a valid integer, unable to parse string as an integer",
      "type": "int_parsing",
      "url": "https://errors.pydantic.dev/2.9/v/int_parsing"
    }
  ]
}

Example Body Validation

You can also use Pydantic models to validate the request body.

Now let's update the items.py file with:

import flask
import flask_typed_routes as ftr
import pydantic


app = flask.Flask(__name__)
ftr.FlaskTypedRoutes(app=app)


class Item(pydantic.BaseModel):
    name: str
    price: float
    description: str = None


@app.get("/")
def read_root():
    return flask.jsonify({"Hello": "World"})


@app.get("/items/<user>/")
def read_items(user: str, skip: int = 0, limit: int = 10):
    return flask.jsonify({"user": user, "skip": skip, "limit": limit})


@app.post('/items/')
def create_item(item: Item):
    return flask.jsonify(item.model_dump())


@app.put('/items/<item_id>/')
def update_item(item_id: int, item: Item):
    return flask.jsonify({'item_id': item_id, **item.model_dump()})

Example Flask Blueprints

Now let's update the items.py file with:

import flask
import flask_typed_routes as ftr

app = flask.Flask(__name__)
ftr.FlaskTypedRoutes(app=app)
orders = flask.Blueprint('orders', __name__)


@orders.get("/orders/<user>/")
def read_orders(user: str, skip: int = 0, limit: int = 10):
    return flask.jsonify({"user": user, "skip": skip, "limit": limit})


app.register_blueprint(orders)

Example Flask Class-Based Views

Now let's update the items.py file with:

import flask
import flask.views
import flask_typed_routes as ftr

app = flask.Flask(__name__)
ftr.FlaskTypedRoutes(app=app)


class UserProducts(flask.views.View):

    def dispatch_request(self, user: str, skip: int = 0, limit: int = 10):
        data = {'user': user, 'skip': skip, 'limit': limit}
        return flask.jsonify(data)


class UserOrders(flask.views.MethodView):

    def get(self, user: str, skip: int = 0, limit: int = 10):
        data = {'user': user, 'skip': skip, 'limit': limit}
        return flask.jsonify(data)


app.add_url_rule('/products/<user>/', view_func=UserProducts.as_view('user_products'))
app.add_url_rule('/orders/<user>/', view_func=UserOrders.as_view('user_orders'))

Interactive API docs

You can generate interactive API docs for your Flask application using OpenAPI schema generated by flask_typed_routes with any OpenAPI UI library. For example, you can use swagger-ui-py to generate the API docs.

pip install swagger-ui-py  # ignore if already installed
import flask
import flask_typed_routes as ftr
import pydantic
import swagger_ui

app = flask.Flask(__name__)
app_ftr = ftr.FlaskTypedRoutes(app=app)


class Item(pydantic.BaseModel):
    name: str
    price: float
    description: str = None


@app.get('/items/<user>/')
def read_items(user: str, skip: int = 0, limit: int = 10):
    data = {'user': user, 'skip': skip, 'limit': limit}
    return flask.jsonify(data)


@app.post('/items/')
def create_item(item: Item):
    return flask.jsonify(item.model_dump())


@app.put('/items/<item_id>/')
def update_item(item_id: int, item: Item):
    return flask.jsonify({'item_id': item_id, **item.model_dump()})


@app.delete('/items/<item_id>/')
def remove_item(item_id: int):
    return flask.jsonify({'item_id': item_id})


swagger_ui.api_doc(app, config=app_ftr.get_openapi_schema(), url_prefix='/docs')

Open your browser and go to http://127.0.0.1:5000/docs/

OpenApi Example

Create item endpoint:

OpenApi Example

Read Items endpoint:

OpenApi Example

Documentation

For more detailed information and usage examples, refer to the project documentation

Development

To contribute to the project, you can run the following commands for testing and documentation:

Running Unit Tests

Install the development dependencies and run the tests:

(env)$ pip install -r requirements-dev.txt  # Skip if already installed
(env)$ python -m pytest tests/
(env)$ python -m pytest --cov # Run tests with coverage

Building the Documentation

To build the documentation locally, use the following commands:

(env)$ pip install -r requirements-doc.txt # Skip if already installed
(env)$ mkdocs serve # Start live-reloading docs server
(env)$ mkdocs build # Build the documentation site

License

This project is licensed under the MIT license.

About

Flask extension designed to effortlessly validate requests with Pydantic based on standard Python type hints.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages