Skip to content

Commit

Permalink
Return EPSILON, EPSILON2, and set_epsilon() as in Planar. (#114)
Browse files Browse the repository at this point in the history
Resolves #113
  • Loading branch information
sgillies authored Jan 2, 2025
1 parent 4311b82 commit 9ca9df9
Show file tree
Hide file tree
Showing 2 changed files with 41 additions and 24 deletions.
58 changes: 40 additions & 18 deletions src/affine/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@
__version__ = "3.0dev"

EPSILON: float = 1e-5
EPSILON2: float = 1e-10


class AffineError(Exception):
Expand Down Expand Up @@ -134,11 +135,6 @@ class Affine:
h: float = field(default=0.0, converter=float)
i: float = field(default=1.0, converter=float)

def __attrs_post_init__(self):
# Prevent property from changing between initialization and
# computation. precision is a cached property.
_ = self.precision

@classmethod
def from_gdal(cls, c: float, a: float, b: float, f: float, d: float, e: float):
"""Use same coefficient order as GDAL's GetGeoTransform().
Expand Down Expand Up @@ -315,11 +311,6 @@ def __repr__(self) -> str:
f" {self.d!r}, {self.e!r}, {self.f!r})"
)

@cached_property
def precision(self):
"""Numerical precision of comparison methods."""
return EPSILON

def to_gdal(self):
"""Return same coefficient order expected by GDAL's SetGeoTransform().
Expand Down Expand Up @@ -379,7 +370,7 @@ def _scaling(self):
det2 = (a * e - b * d) ** 2

delta = trace**2 / 4.0 - det2
if delta < self.precision:
if delta < EPSILON2:
delta = 0.0

sqrt_delta = math.sqrt(delta)
Expand Down Expand Up @@ -425,7 +416,7 @@ def rotation_angle(self) -> float:
@property
def is_identity(self) -> bool:
"""True if this transform equals the identity matrix, within rounding limits."""
return self is identity or self.almost_equals(identity, self.precision)
return self is identity or self.almost_equals(identity, EPSILON)

@property
def is_rectilinear(self) -> bool:
Expand All @@ -434,8 +425,8 @@ def is_rectilinear(self) -> bool:
i.e., whether a shape would remain axis-aligned, within rounding
limits, after applying the transform.
"""
return (abs(self.a) < self.precision and abs(self.e) < self.precision) or (
abs(self.d) < self.precision and abs(self.b) < self.precision
return (abs(self.a) < EPSILON and abs(self.e) < EPSILON) or (
abs(self.d) < EPSILON and abs(self.b) < EPSILON
)

@property
Expand All @@ -446,7 +437,7 @@ def is_conformal(self) -> bool:
transform, within rounding limits. This implies that the
transform has no effective shear.
"""
return abs(self.a * self.b + self.d * self.e) < self.precision
return abs(self.a * self.b + self.d * self.e) < EPSILON

@property
def is_orthonormal(self) -> bool:
Expand All @@ -461,8 +452,8 @@ def is_orthonormal(self) -> bool:
a, b, d, e = self.a, self.b, self.d, self.e
return (
self.is_conformal
and abs(1.0 - (a * a + d * d)) < self.precision
and abs(1.0 - (b * b + e * e)) < self.precision
and abs(1.0 - (a * a + d * d)) < EPSILON
and abs(1.0 - (b * b + e * e)) < EPSILON
)

@cached_property
Expand Down Expand Up @@ -518,7 +509,7 @@ def almost_equals(self, other, precision: Optional[float] = None) -> bool:
True if absolute difference between each element
of each respective transform matrix < ``precision``.
"""
precision = precision or self.precision
precision = precision or EPSILON
return all(abs(sv - ov) < precision for sv, ov in zip(self, other))

@cached_property
Expand Down Expand Up @@ -721,3 +712,34 @@ def dumpsw(obj) -> str:
"""
center = obj * Affine.translation(0.5, 0.5)
return "\n".join(repr(getattr(center, x)) for x in list("adbecf")) + "\n"


def set_epsilon(epsilon: float) -> None:
"""Set the global absolute error value and rounding limit.
This value is accessible via the affine.EPSILON global variable.
Parameters
----------
epsilon : float
The global absolute error value and rounding limit for
approximate floating point comparison operations.
Returns
-------
None
Notes
-----
The default value of ``0.00001`` is suitable for values that are in
the "countable range". You may need a larger epsilon when using
large absolute values, and a smaller value for very small values
close to zero. Otherwise approximate comparison operations will not
behave as expected.
"""
global EPSILON, EPSILON2
EPSILON = float(epsilon)
EPSILON2 = EPSILON**2


set_epsilon(1e-5)
7 changes: 1 addition & 6 deletions src/affine/tests/test_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
import pytest

import affine
from affine import EPSILON, Affine
from affine import Affine


def seq_almost_equal(t1, t2, error=0.00001):
Expand Down Expand Up @@ -445,11 +445,6 @@ def test_rmul_tuple():
(2.0, 2.0) * t


def test_transform_precision():
t = Affine.rotation(45.0)
assert t.precision == EPSILON


def test_associative():
point = (12, 5)
trans = Affine.translation(-10.0, -5.0)
Expand Down

0 comments on commit 9ca9df9

Please sign in to comment.