Skip to content

Commit

Permalink
Update FIL tests to use XGBoost UBJSON instead of binary (#6153)
Browse files Browse the repository at this point in the history
Starting from 2.1, XGBoost uses UBJSON format to serialize models.
Replace all uses of the legacy model format with UBJSON.

Also make `xgboost` a test dependency of cuML so that the FIL tests run in the CI pipelines.

Authors:
  - Philip Hyunsu Cho (https://github.com/hcho3)

Approvers:
  - William Hicks (https://github.com/wphicks)
  - Robert Maynard (https://github.com/robertmaynard)
  - https://github.com/jakirkham

URL: #6153
  • Loading branch information
hcho3 authored Dec 4, 2024
1 parent 88b81b0 commit 53259f5
Show file tree
Hide file tree
Showing 6 changed files with 21 additions and 17 deletions.
1 change: 1 addition & 0 deletions conda/environments/all_cuda-118_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -77,4 +77,5 @@ dependencies:
- sysroot_linux-64==2.17
- treelite==4.3.0
- umap-learn==0.5.6
- xgboost>=2.1.0
name: all_cuda-118_arch-x86_64
1 change: 1 addition & 0 deletions conda/environments/all_cuda-125_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -73,4 +73,5 @@ dependencies:
- sysroot_linux-64==2.17
- treelite==4.3.0
- umap-learn==0.5.6
- xgboost>=2.1.0
name: all_cuda-125_arch-x86_64
3 changes: 2 additions & 1 deletion dependencies.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -523,6 +523,7 @@ dependencies:
- pytest-xdist
- seaborn
- *scikit_learn
- &xgboost xgboost>=2.1.0
- statsmodels
- umap-learn==0.5.6
- pynndescent
Expand All @@ -537,4 +538,4 @@ dependencies:
- pandas
- *scikit_learn
- seaborn
- xgboost
- *xgboost
20 changes: 10 additions & 10 deletions python/cuml/cuml/tests/experimental/test_filex.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ def test_fil_classification(
X, y, train_size=0.8, random_state=0
)

model_path = os.path.join(tmp_path, "xgb_class.model")
model_path = os.path.join(tmp_path, "xgb_class.ubj")

bst = _build_and_save_xgboost(
model_path,
Expand Down Expand Up @@ -258,7 +258,7 @@ def test_fil_regression(
X, y, train_size=train_size, random_state=0
)

model_path = os.path.join(tmp_path, "xgb_reg.model")
model_path = os.path.join(tmp_path, "xgb_reg.ubj")
bst = _build_and_save_xgboost(
model_path,
X_train,
Expand Down Expand Up @@ -490,12 +490,12 @@ def test_fil_skl_regression(
np.testing.assert_allclose(fil_preds_opt, fil_preds, atol=1.2e-3)


@pytest.fixture(scope="session", params=["binary", "json"])
@pytest.fixture(scope="session", params=["ubjson", "json"])
def small_classifier_and_preds(tmpdir_factory, request):
X, y = simulate_data(500, 10, random_state=43210, classification=True)

ext = "json" if request.param == "json" else "model"
model_type = "xgboost_json" if request.param == "json" else "xgboost"
ext = "json" if request.param == "json" else "ubj"
model_type = "xgboost_json" if request.param == "json" else "xgboost_ubj"
model_path = str(
tmpdir_factory.mktemp("models").join(f"small_class.{ext}")
)
Expand Down Expand Up @@ -738,7 +738,7 @@ def test_predict_per_tree(
classification=True,
)

model_path = os.path.join(tmp_path, "xgb_class.model")
model_path = os.path.join(tmp_path, "xgb_class.ubj")

xgboost_params = {"base_score": (0.5 if n_classes == 2 else 0.0)}
bst = _build_and_save_xgboost(
Expand All @@ -751,7 +751,7 @@ def test_predict_per_tree(
xgboost_params=xgboost_params,
)
fm = ForestInference.load(model_path, output_class=True)
tl_model = treelite.Model.from_xgboost(bst)
tl_model = treelite.frontend.from_xgboost(bst)
pred_per_tree_tl = treelite.gtil.predict_per_tree(tl_model, X)

with using_device_type(infer_device):
Expand All @@ -773,7 +773,7 @@ def test_predict_per_tree(
assert pred_per_tree.shape == expected_shape
np.testing.assert_almost_equal(sum_by_class, margin_pred, decimal=3)
np.testing.assert_almost_equal(
pred_per_tree, pred_per_tree_tl, decimal=3
pred_per_tree.reshape((n_rows, -1, 1)), pred_per_tree_tl, decimal=3
)
np.testing.assert_almost_equal(
pred_per_tree_opt, pred_per_tree, decimal=3
Expand Down Expand Up @@ -844,7 +844,7 @@ def test_apply(train_device, infer_device, n_classes, tmp_path):
classification=True,
)

model_path = os.path.join(tmp_path, "xgb_class.model")
model_path = os.path.join(tmp_path, "xgb_class.ubj")

xgboost_params = {"base_score": (0.5 if n_classes == 2 else 0.0)}
bst = _build_and_save_xgboost(
Expand All @@ -858,7 +858,7 @@ def test_apply(train_device, infer_device, n_classes, tmp_path):
)

fm = ForestInference.load(
model_path, output_class=True, model_type="xgboost"
model_path, output_class=True, model_type="xgboost_ubj"
)

with using_device_type(infer_device):
Expand Down
12 changes: 6 additions & 6 deletions python/cuml/cuml/tests/test_fil.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2019-2023, NVIDIA CORPORATION.
# Copyright (c) 2019-2024, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -155,7 +155,7 @@ def test_fil_classification(
X, y, train_size=train_size, random_state=0
)

model_path = os.path.join(tmp_path, "xgb_class.model")
model_path = os.path.join(tmp_path, "xgb_class.ubj")

bst = _build_and_save_xgboost(
model_path,
Expand Down Expand Up @@ -226,7 +226,7 @@ def test_fil_regression(n_rows, n_columns, num_rounds, tmp_path, max_depth):
X, y, train_size=train_size, random_state=0
)

model_path = os.path.join(tmp_path, "xgb_reg.model")
model_path = os.path.join(tmp_path, "xgb_reg.ubj")
bst = _build_and_save_xgboost(
model_path,
X_train,
Expand Down Expand Up @@ -447,12 +447,12 @@ def test_fil_skl_regression(
assert np.allclose(fil_preds, skl_preds, 1.2e-2)


@pytest.fixture(scope="session", params=["binary", "json"])
@pytest.fixture(scope="session", params=["ubjson", "json"])
def small_classifier_and_preds(tmpdir_factory, request):
X, y = simulate_data(500, 10, random_state=43210, classification=True)

ext = "json" if request.param == "json" else "model"
model_type = "xgboost_json" if request.param == "json" else "xgboost"
ext = "json" if request.param == "json" else "ubj"
model_type = "xgboost_json" if request.param == "json" else "xgboost_ubj"
model_path = str(
tmpdir_factory.mktemp("models").join(f"small_class.{ext}")
)
Expand Down
1 change: 1 addition & 0 deletions python/cuml/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ test = [
"seaborn",
"statsmodels",
"umap-learn==0.5.6",
"xgboost>=2.1.0",
] # This list was generated by `rapids-dependency-file-generator`. To make changes, edit ../../dependencies.yaml and run `rapids-dependency-file-generator`.

[project.urls]
Expand Down

0 comments on commit 53259f5

Please sign in to comment.